Kantaphon Kuhapatanakul, Natnicha Meeboomak and Kanyarat Thongsing
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 24, 2018, Number 3, Pages 56–61
DOI: 10.7546/nntdm.2018.24.3.56-61
Full paper (PDF, 146 Kb)
Details
Authors and affiliations
Kantaphon Kuhapatanakul ![]()
Department of Mathematics, Faculty of Science,
Kasetsart University, Bangkok, Thailand
Natnicha Meeboomak ![]()
Department of Mathematics, Faculty of Science,
Kasetsart University, Bangkok, Thailand
Kanyarat Thongsing ![]()
Department of Mathematics, Faculty of Science,
Kasetsart University, Bangkok, Thailand
Abstract
Let
be a positive integer. We study the Diophantine equation
. This Diophantine equation generalizes a result of Gürel [5] for
. We also prove that the product
is a perfect square only for the values
for which the triangular number
is a perfect square.
Keywords
- Diophantine equation
- Perfect square
- Quartic polynomial
- Quadratic polynomial
2010 Mathematics Subject Classification
- 11D25
- 11D09
References
- Amdeberhan, T., Medina, L. A., & Moll, V. H. (2008) Arithmetical properties of a sequence arising from an arctangent sum, J. Number Theory, 128(6), 1807–1846.
- Chen, Y. G., Gong, M. L., & Ren, X. Z. (2013) On the products
, J. Number Theory, 133(8), 2470–2474. - Cilleruelo, J. (2008) Squares in
, J. Number Theory, 128(8), 2488–2491. - Fang, J. H. (2009) Neither
nor
is a perfect square, Integers, 9, 177–180. - Gürel, E. (2016) On the occurrence of perfect squares among values of certain polynomial products, Amer. Math. Monthly, 123(6), 597–599.
- Gürel, E. & Kisisel, A. U. O. (2010) A note on the products
. J. Number Theory, 130(1), 187–191. - Sloane, N. J. A. (2011) The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org.
- Yang, S., Togbé, A. & He, B. (2011) Diophantine equations with products of consecutive values of a quadratic polynomial, J. Number Theory, 131(5), 1840–1851.
- Zhang,W. &Wang, T. (2012) Powerful numbers in
, J. Number Theory, 132(11), 2630–2635.
Related papers
- Atanassov, K. T., Shannon, A. G., & Sándor, J. (2018). Editorial note. Notes on Number Theory and Discrete Mathematics, 24(4), 149-150.
Cite this paper
Kuhapatanakul, K., Meeboomak, N., & Thongsing, K. (2018). On products of quartic polynomials over consecutive indices which are perfect squares. Notes on Number Theory and Discrete Mathematics, 24(3), 56-61, DOI: 10.7546/nntdm.2018.24.3.56-61.
