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Abstract: Let 𝑎 be a positive integer. We study the Diophantine equation
𝑛∏︁

𝑘=1

(𝑎2𝑘4 + (2𝑎− 𝑎2)𝑘2 + 1) = 𝑦2.

This Diophantine equation generalizes a result of Gürel [5] for 𝑎 = 2. We also prove that the
product (22 − 1)(32 − 1) . . . (𝑛2 − 1) is a perfect square only for the values 𝑛 for which the
triangular number 𝑇𝑛 is a perfect square.
Keywords: Diophantine equation, Perfect square, Quartic polynomial, Quadratic polynomial.
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1 Introduction

The study of sequences containing infinitely many squares is a common topic in number theory.
Let Ω𝜇(𝑛) = (1𝜇 + 1)(2𝜇 + 1) . . . (𝑛𝜇 + 1) where 𝜇 ≥ 2 is an integer. Amdeberhan et al.
[1] conjectured that Ω2(𝑛) is not a square for any integer 𝑛 > 3. Cilleruelo [3] confirmed this
conjecture. Gürel and Kisisel [6] proved that Ω3(𝑛) is not a square. Later, an idea due to Zudilin
was applied to Ω𝑝(𝑛) by Zhang and Wang [9] and to Ω𝑝𝑡(𝑛) by Chen et al. [2] for any odd
prime 𝑝. Fang [4] confirmed another similar conjecture posed by Amdeberhan et al. [1] to the
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products of quadratic polynomials
∏︀𝑛

𝑘=1(4𝑘
2+1) and

∏︀𝑛
𝑘=1(2𝑘

2−2𝑘+1) are not perfect squares.
Yang et al. [8] studied the Diophantine equation

∏︀𝑛
𝑘=1(𝑎𝑘

2 + 𝑏𝑘 + 𝑐) = 𝑑𝑦𝑙. Gürel [5] proved
that the product

∏︀𝑛
𝑘=1(4𝑘

4 + 1) is a perfect square for infinitely many 𝑛.
In this manuscript, we will extend the result of Gürel [5] on the polynomial 4𝑘4 + 1 to the

polynomial 𝑃𝑎(𝑘) = 𝑎2𝑘4 + (2𝑎 − 𝑎2)𝑘2 + 1, where 𝑎 is a positive integer. Next, we prove
the product (22 − 1)(32 − 1) . . . (𝑛2 − 1) is a perfect square only for the values 𝑛 for which the
triangular number 𝑇𝑛 is a perfect square.

2 Main results

Let 𝑎 be a positive integer and 𝑃𝑎(𝑥) = 𝑎2𝑥4 + (2𝑎− 𝑎2)𝑥2 + 1. Denote 𝒳𝑎(𝑛) is the product of
first 𝑛 consecutive values of the 𝑃𝑎(𝑛), i.e.,

𝒳𝑎(𝑛) = 𝑃𝑎(1)𝑃𝑎(2) . . . 𝑃𝑎(𝑛).

Lemma 1. 𝒳𝑎(𝑛) is a square if and only if 𝑎𝑛2 + 𝑎𝑛 + 1 is a square.

Proof. Let 𝑓(𝑥) = 𝑎𝑥2 − 𝑎𝑥 + 1. Then 𝑓(𝑥 + 1) = 𝑎𝑥2 + 𝑎𝑥 + 1 and

𝑃𝑎(𝑥) = 𝑎2𝑥4 + (2𝑎− 𝑎2)𝑥2 + 1 = (𝑎𝑥2 − 𝑎𝑥 + 1)(𝑎𝑥2 + 𝑎𝑥 + 1) = 𝑓(𝑥)𝑓(𝑥 + 1).

We have

𝒳𝑎(𝑛) =
𝑛∏︁

𝑘=1

𝑃𝑎(𝑘) =
𝑛∏︁

𝑘=1

𝑓(𝑘)𝑓(𝑘 + 1) =

(︃
𝑛∏︁

𝑘=2

𝑓(𝑘)

)︃2

𝑓(1)𝑓(𝑛 + 1).

Since 𝑓(1) = 1, it follows that 𝒳𝑎(𝑛) is a square if and only if 𝑓(𝑛 + 1) is a square.

Consider 4𝑛2 + 4𝑛 + 1 = (2𝑛 + 1)2, we obtain that

𝑛∏︁
𝑘=1

(16𝑘4 − 8𝑘2 + 1) is a perfect square for all 𝑛.

Theorem 1. Let 𝑎, 𝑑, 𝑛 be positive integers with 𝑎 = 𝑑2 ̸= 4. Suppose 𝑝 =

⌊︂
𝑑 + 1

2

⌋︂
. Then 𝒳𝑎(𝑛)

is not a perfect square for 𝑛 >
𝑝2 − 2𝑝

𝑑2 − 2𝑑𝑝 + 2𝑑
.

Proof. By Lemma 1, the problem is reduced to finding square values of 𝑓(𝑛 + 1), i.e., finding
integer solutions to the following equation,

𝑎𝑛2 + 𝑎𝑛 + 1 = 𝑚2. (1)

We see that
𝑎𝑛2 + 𝑎𝑛 + 1 = 𝑑2𝑛2 + 𝑑2𝑛 + 1 < (𝑑𝑛 + 𝑝)2.

Assume 𝑛 > (𝑝2 − 2𝑝)/(𝑑2 − 2𝑑𝑝 + 2𝑑).
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If 𝑑 is even, we get that 𝑝 =
𝑑

2
and 𝑛 >

𝑑− 4

8
, so

𝑑2𝑛2 + 𝑑2𝑛 + 1 > (𝑑𝑛 + 𝑝− 1)2.

And if 𝑑 is odd, we have that 𝑝 = (𝑑 + 1)/2 and 𝑛 > (𝑑2 − 2𝑑− 3)/4𝑑, so

𝑑2𝑛2 + 𝑑2𝑛 + 1 > (𝑑𝑛 + 𝑝− 1)2.

We obtain that
(𝑑𝑛 + 𝑝− 1)2 < 𝑑2𝑛2 + 𝑑2𝑛 + 1 < (𝑑𝑛 + 𝑝)2.

Since there is no perfect square between two consecutive perfect squares, 𝒳𝑎(𝑛) is not a perfect

square for 𝑛 >
𝑝2 − 2𝑝

𝑑2 − 2𝑑𝑝 + 2𝑑
and 𝑎 = 𝑑2 ̸= 4 .

For 𝑎 not a perfect square, we conjecture that the Diophantine equation (1) has infinitely many
solutions. The case 𝑎 = 2 has been shown in [5]. In the next theorem, we will only show the case
3 ≤ 𝑎 ≤ 13.

Theorem 2. Let 3 ≤ 𝑎 ≤ 13 be not a perfect square. Then 𝒳𝑎(𝑛) is a perfect square for infinitely
many 𝑛.

Proof. It suffices to find the integer solutions of (1).

∙ Case 𝑎 = 3, we consider
3𝑛2 + 3𝑛 + 1 = 𝑚2. (2)

We see that (7, 13) is a solution of (2). For each solution (𝑥, 𝑦) of (2), the map sends (𝑥, 𝑦)

to (7𝑥 + 4𝑦 + 3, 12𝑥 + 7𝑦 + 6), which gives another solution of (2). It can be verified that

3(7𝑥 + 4𝑦 + 3)2 + 3(7𝑥 + 4𝑦 + 3) + 1 = 147𝑥2 + 48𝑦2 + 168𝑥𝑦 + 147𝑥 + 84𝑦 + 37

= (3𝑥2 + 3𝑥 + 1) − 𝑦2 + (12𝑥 + 7𝑦 + 6)2

= (12𝑥 + 7𝑦 + 6)2.

Therefore, the equation (2) has infinitely many distinct solutions.
(Note: If (𝑛𝑖,𝑚𝑖) are all solutions of (2), the sequence {𝑛𝑖} satisfies 𝑛𝑖 = 14𝑛𝑖−1−𝑛𝑖−2+6,
where 𝑛0 = 0, 𝑛1 = 7, see 𝐴001921 in [7], and the sequence {𝑚𝑖} is 𝐴001570 in [7].)

∙ Case 𝑎 = 5, we consider
5𝑛2 + 5𝑛 + 1 = 𝑚2. (3)

Clearly, (8, 19) is a solution of (3). For each solution (𝑥, 𝑦) of (3), the map sends (𝑥, 𝑦) to
(9𝑥 + 4𝑦 + 4, 20𝑥 + 9𝑦 + 10), which gives another solution of (3).
(Note: If (𝑛𝑖,𝑚𝑖) are all solutions of (3), then 𝑛𝑖 = (𝐹6𝑖+3 − 2)/4 and 𝑚𝑖 = (𝐹6𝑛+4 +

𝐹6𝑛+2)/4, where 𝐹𝑖 is 𝑖𝑡ℎ Fibonacci number, see 𝐴053606 and 𝐴049629 in [7].)
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∙ Case 𝑎 = 6, we consider
6𝑛2 + 6𝑛 + 1 = 𝑚2. (4)

Clearly, (4, 11) is a solution of (4). For each solution (𝑥, 𝑦) of (4), the map sends (𝑥, 𝑦) to
(5𝑥 + 2𝑦 + 2, 12𝑥 + 5𝑦 + 6), which gives another solution of (4).
(Note: If (𝑛𝑖,𝑚𝑖) are all solutions of (4), then 𝑛𝑖 = 11𝑛𝑖−1−11𝑛𝑖−2 +𝑛𝑖−3, where 𝑛0 = 0,
𝑛1 = 4 and 𝑛2 = 44, see 𝐴105038 in [7] and 𝑚𝑖 is 𝐴054320 in [7].)

∙ Case 𝑎 = 7, we consider
7𝑛2 + 7𝑛 + 1 = 𝑚2. (5)

Clearly, (15, 41) is a solution of (5). For each solution (𝑥, 𝑦) of (5), the map sends (𝑥, 𝑦) to
(127𝑥 + 48𝑦 + 63, 336𝑥 + 127𝑦 + 168), which gives another solution of (5).
(Note: If (𝑛𝑖,𝑚𝑖) are all solutions of (5), then 𝑛𝑖 = 254𝑛𝑖−2 − 𝑛𝑖−4 + 126, where 𝑛0 = 0,

𝑛1 = 15, 𝑛2 = 111 and 𝑛3 = 3936, see 𝐴105051 or 𝐴105040 in [7].)

∙ Case 𝑎 = 8, we consider
8𝑛2 + 8𝑛 + 1 = 𝑚2. (6)

Clearly, (2, 7) is a solution of (6). For each solution (𝑥, 𝑦) of (6), the map sends (𝑥, 𝑦) to
(3𝑥 + 𝑦 + 1, 8𝑥 + 3𝑦 + 4), which gives another solution of (6).
(Note: If (𝑛𝑖,𝑚𝑖) are all solutions of (6), the sequences {𝑛𝑖} and {𝑚𝑖} are respectively
𝐴053141 and 𝐴002315 in [7].)

∙ Case 𝑎 = 10, we consider
10𝑛2 + 10𝑛 + 1 = 𝑚2. (7)

Clearly, (3, 11) is a solution of (7). For each solution (𝑥, 𝑦) of (7), the map sends (𝑥, 𝑦) to
(19𝑥 + 6𝑦 + 9, 60𝑥 + 19𝑦 + 30), which gives another solution of (7).
(Note: If (𝑛𝑖,𝑚𝑖) are all solutions of (7), the sequence {𝑛𝑖} is 𝐴222390 in [7].)

∙ Case 𝑎 = 11, we consider
11𝑛2 + 11𝑛 + 1 = 𝑚2. (8)

Clearly, (39, 131) is a solution of (8). For each solution (𝑥, 𝑦) of (8), the map sends (𝑥, 𝑦)

to (199𝑥 + 60𝑦 + 99, 660𝑥 + 199𝑦 + 330), which gives another solution of (8).
(Note: If (𝑛𝑖,𝑚𝑖) are all solutions of (8), the sequences {𝑛𝑖} and {𝑚𝑖} are respectively
𝐴105838 and 𝐴105837 in [7].)

∙ Case 𝑎 = 12, we consider
12𝑛2 + 12𝑛 + 1 = 𝑚2. (9)

Clearly, (1, 5) is a solution of (9). For each solution (𝑥, 𝑦) of (9), the map sends (𝑥, 𝑦) to
(7𝑥 + 2𝑦 + 3, 24𝑥 + 7𝑦 + 12), which gives another solution of (9).
(Note: If (𝑛𝑖,𝑚𝑖) are all solutions of (9), the sequences {𝑛𝑖} and {𝑚𝑖} are respectively
𝐴061278 and 𝐴001834 in [7].)
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∙ Case 𝑎 = 13, we consider
13𝑛2 + 13𝑛 + 1 = 𝑚2. (10)

Clearly, (7, 27) is a solution of (10). For each solution (𝑥, 𝑦) of (10), the map sends (𝑥, 𝑦)

to (649𝑥 + 180𝑦 + 324, 234𝑥 + 649𝑦 + 1170), which gives another solution of (10).
(Note: If (𝑛𝑖,𝑚𝑖) are all solutions of (10), the sequence {𝑛𝑖} is 𝐴104240 in [7].)

Therefore, 𝒳𝑎(𝑛) is a perfect square for infinitely many 𝑛, where 𝑎 is not a perfect square.

For 𝑎 > 13 not a perfect square, the authors consider that 𝒳𝑎(𝑛) is a perfect square for
infinitely many 𝑛. We can find the linear map for each solution (𝑛0,𝑚0) that gives another
solution of (1). But the authors will leave this problem to the interested reader.

From Theorems 1 and 2, we give the following examples for 𝑎 = 1, 3, 5.

(1)
𝑛∏︁

𝑘=1

(𝑘4 + 𝑘2 + 1) is not a square.

(2)
𝑛∏︁

𝑘=1

(9𝑘4 − 3𝑘2 + 1) and
𝑛∏︁

𝑘=1

(25𝑘4 − 15𝑘2 + 1) are perfect squares for infinitely many 𝑛.

Next, we give analogue of Ω2(𝑛) for the product (22 − 1)(32 − 1) . . . (𝑛2 − 1).

Theorem 3. The product
𝑛∏︁

𝑘=2

(𝑘2 − 1) is a perfect square if and only if the triangular number 𝑇𝑛

is a perfect square for 𝑛 > 1.

Proof. The triangular number 𝑇𝑛 is a number obtained by adding all positive integers less than or

equal to a given positive integer 𝑛, i.e., 𝑇𝑛 =
𝑛∑︁

𝑖=1

𝑖 =
𝑛(𝑛 + 1)

2
. We have

𝑛∏︁
𝑘=2

(𝑘2 − 1) =
𝑛∏︁

𝑘=2

(𝑘 − 1)(𝑘 + 1)

=

(︃
𝑛−1∏︁
𝑘=3

𝑘

)︃2

2𝑛(𝑛 + 1)

=

(︃
𝑛−1∏︁
𝑘=3

𝑘

)︃2

4𝑇𝑛.

Thus, this product is a square if and only if 𝑇𝑛 is a square.

The triangular number 𝑇𝑛 is a square (see 𝐴001108 in [7]) when the value of 𝑛 is 1, 8, 49, 288,

1681, 9800, 57121, 332928, 1940449, 11309768, . . . .
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