Rafał Bystrzycki and Tomasz Schoen
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 24, 2018, Number 2, Pages 21–27
DOI: 10.7546/nntdm.2018.24.2.21-27
Full paper (PDF, 136 Kb)
Details
Authors and affiliations
Rafał Bystrzycki
Department of Discrete Mathematics, Adam Mickiewicz University
ul. Umultowska 87, 61-614 Poznán, Poland
Tomasz Schoen
Department of Discrete Mathematics, Adam Mickiewicz University
ul. Umultowska 87, 61-614 Poznán, Poland
Abstract
We investigate the size of the sets λ1 • A + … + λh • A, where λi are integers. Specifically, we look for upper bounds in terms of the doubling constant K = |A + A|/|A|. We also examine some situations in which those bounds can be significantly strengthened.
Keywords
- Sumsets
- Dilates
- Ruzsa triangle inequality
- Chang covering lemma
2010 Mathematics Subject Classification
- 11P70
References
- Bukh, B. (2008) Sums of dilates, Combin. Probab. Comput., 17, 627–639.
- Bush, A. & Zhao, Y. (2017) New upper bound for sums of dilates, Electon. J. Comb., 24 (3), # P3.37.
- Plünnecke, H. (1970) Eine zahlentheorische anwendung der graphtheorie, J. Reine Angew. Math., 243, 171–183.
- Ruzsa, I. (1996) Sums of finite sets. In Number Theory: New York Seminar, 281–293.
- Ruzsa, I. (2009) Sumsets and structure. In Combinatorial Number Theory and Additive Group Theory, 87–210.
- Sanders, T. (2012) On the Bogolyubov–Ruzsa Lemma, Anal. PDE, 5, 627–655.
- Schoen, T. & Shkredov I. D. (2016) Additive dimension and a theorem of Sanders, J. Aust. Math. Soc., 100, 124–144.
- Tao, T.C. & Vu, H.V. (2006) Additive combinatorics, volume 105 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge.
Related papers
Cite this paper
Bystrzycki, R. & Schoen, T. (2018). Alternative approach to sums of dilates. Notes on Number Theory and Discrete Mathematics, 24(2), 21-27, DOI: 10.7546/nntdm.2018.24.2.21-27.