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e-mail: rafbys@amu.edu.pl
2 Department of Discrete Mathematics, Adam Mickiewicz University

ul. Umultowska 87, 61-614 Poznań, Poland
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Abstract: We investigate the size of the sets λ1 ·A+ · · ·+ λh ·A, where λi are integers. Specif-
ically, we look for upper bounds in terms of the doubling constant K = |A+A|

|A| . We also examine
some situations in which those bounds can be significantly strengthened.
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1 Introduction and known results

One of the classical results in additive combinatorics is Plünnecke inequality, bounding the max-
imal size of the set of sums of k elements of A by Kk|A|. Natural generalization of the problem
of bounding size of the set of sums of k elements is a problem of finding a good bound for
the size of set of sums of the form λ1a1 + . . . + λkak for some given integers λ1, . . . , λk (in
Plünnecke inequality they are all equal±1), where a1, . . . , ak are elements of A. In this case until
recently there were no known bounds out of those easily following from Plünnecke inequality.
Breakthrough result was obtained in 2008 by Boris Bukh, who used binary expansion to get a
bound in terms of logarithms of number |λi| rather than those numbers themselves. He proved
the following theorem.
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Theorem 1 ([1]). Let λ1, . . . , λh be given integers and let A ⊂ Z. If either |A + A| ≤ K|A| or
|A− A| ≤ K|A|, then |λ1 · A+ · · ·+ λh · A| ≤ Kp|A| where

p = 7 + 12
h∑
i=1

log2(1 + |λi|).

In particular, this result can be presented in the following simpler form:

Corollary 1. If |A+ A| ≤ K|A| and |λi| ≤ 2r then

|λ1 · A+ · · ·+ λh · A| ≤ KO(rh)|A|.

Bukh himself supposed that this result can be further improved in case where there are many
summands involved. Slight improvement was recently obtained by Bush and Zhao, who proved
the theorem below.

Theorem 2 ([2]). If |A+ A| ≤ K|A| and |λi| ≤ 2r then

|λ1 · A+ · · ·+ λh · A| ≤ K
O

(
(r+h)2

log(r+h)

)
|A|.

The main innovation in their proof is the use of graph theoretic methods. The main aim of
this paper is to improve this bound using different (more direct) method.

It seems clear that if the set of λi coefficients have some good additive properties it should be
possible to get some better bounds. Formalizing this intuition is the main focus in the second part
of the article. This line of investigation was started by the second-named author and Shkredov,
who proved the following

Theorem 3 ([7]). Let A ⊂ G be a finite set and λi ∈ Z \ {0}. Suppose that |A + A| ≤ K|A|,
then

|λ1 · A+ · · ·+ λh · A| ≤ eO(log8K)(h+log (
∑

i |λi|))|A|.

The novelty here is that the result shows that the problem turns out to be much easier for some
specific choice of parameters K and h, i.e. when h is sufficiently large compared to K.

2 Tools

Basic tools we are going to use include primarily the so called Ruzsa calculus. It consists of
inequalities bounding cardinalities of certain sumsets by expressions involving other sumsets. In
our arguments we are going to use the following inequality.

Lemma 1 ([5, Sum triangle inequality]). For any finite X, Y, Z ⊂ Z we have

|X + Z| ≤ |X + Y ||Y + Z|
|Y |

.

It is analogous to classical Ruzsa triangle inequality.
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Lemma 2 ([4]). For any finite X, Y, Z ⊂ Z we have

|X − Z| ≤ |X − Y ||Y − Z|
|Y |

.

It should be remarked that in our approach we could use this inequality in place of sum triangle
inequality. Using sums only makes the exposition a little bit clearer.

We are going to repeatedly use Plünnecke inequality as well as Bukh’s theorem (Theorem 1).

Lemma 3 ([3, Plünnecke inequality]). If |A+A| ≤ K|A| or |A−A| ≤ K|A|, then |mA−nA| ≤
Km+n|A| for all non-negative integers m,n.

In [7] the theorem of Sanders stated below is used to improve the bound when K is small
compared to k.

Lemma 4 ([6]). Suppose that G is an abelian group and A, S ⊂ G are finite non-empty sets
such that |A + S| ≤ K min{|A|, |S|}. Then (A − A) + (S − S) contains a proper symmetric
d(K)-dimensional coset progression P of size exp (−h(K))|A + S|. Moreover, we may take
d(K) = O(log6K) and h(K) = O(log6K log logK).

In the same paper the following corollary is proved, which we will use to continue investiga-
tion in this line of reasoning by proving Theorem 5.

Corollary 2 ([7]). Let A be a subset of abelian group G such that |A+ A| ≤ K|A|. Then

|kA| ≤
(

3ek

K

)O(K log8K)

|A|

for every k ≥ K.

Covering lemmas turn out to be very useful in bounding sums of dilates. Bukh in his proof
used the following result obtained by Ruzsa.

Lemma 5 ([5, Ruzsa covering lemma ]). For any non-empty sets A,B in abelian group G one
can cover B by |A+B|

|A| translates of A− A.

We use another lemma proved by Chang to improve the bounds when then set of λ coefficients
has some additive structure.

Lemma 6 ([8, Chang covering lemma]). Suppose that G is an abelian group and A, S ⊂ G are
finite sets with |nA| ≤ Kn|A| for all n ≥ 1 and |A + S| ≤ L|S|. Then there is a set T with
|T | = O(K log 2KL) such that

A ⊂ Span(T ) + S − S.
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3 Results

Now we state our first theorem. This result and its proof should be compared to Theorem 2.

Theorem 4. Let |A+ A| ≤ K|A| and let |λi| < 2r for i = 1, . . . , h. Then

|λ1 · A+ · · ·+ λh · A| ≤ KO( rh
log(h)

+h log(h))|A|.

Proof. Without loss of generality, we can assume that h ≥ 16, since otherwise it follows from
Theorem 1. If r ≤ log h, then again the claim follows from Theorem 1. We are going to show
that it holds for every h and r using induction on r with additional assumption that λ1 = 1.

Let Sλ = λ1 ·A+ · · ·+λh ·A. Take d = b h
log h
c. Write λi as a sum dλ′i +αi with 0 ≤ αi < d.

Then with λ′ = (1, λ′2, . . . , λ
′
h) and α = (α1, . . . , αh, d)

|Sλ(A)|
|A|

≤ |Sα(A)|
|A|

|Sλ′(A)|
|A|

by Ruzsa triangle inequality withX = α1 ·A+· · ·+αh ·A, Y = d·A and Z = λ′1 ·A+· · ·+λ′h ·A.
We can bound the first term by collecting summands with the αi and then repeatedly using

Ruzsa triangle inequality. Writing ki for the number of summands with αj = i we get

|Sα(A)|
|A|

=
|k11 · A+ · · ·+ kd−1(d− 1) · A|

|A|
≤

≤ |(k1 + 1)A|
|A|

|A+ 2 · A|
|A|

d−1∏
i=2

(
|(ki + 2)i · A|

|A|
|i · A+ (i+ 1) · A|

|A|
)
|d · A+ d · A|

|A|

At each step we used Ruzsa triangle inequality twice: first time withX(1)
i = kii·A, Y (1

i ) = i·A
and Zi = ki+1(i + 1) · A + · · · + kd−1(d − 1) · A and then the second time with X(2)

i = i · A,
Y

(2)
i = (i+ 1) · A.

Using Plünnecke inequality to bound each term with repeated summand and Theorem 1 to
bound expressions with different summands we obtain

|Sα(A)|
|A|

≤ K
∑d−1

i=1 (ki+2)+1KO(d log d) ≤ KO(2d+1+h+d log d)

By the definition of d it is
|Sα(A)|
|A|

≤ KO(h).

To bound the second term we can use induction assumption. By our additional assumption
(λ1 = 1) there will be only at most h summands. By assumption on h and the definition of d the
number of bits in λ’s will drop by at least 1

2
log h. Hence

|Sλ(A)|
|A|

≤ KO(h)KO((r− 1
2

log h) h
log h

+h log h) ≤ KO( rh
log(h)

+h log(h))|A|

Without assumption on λ1 we can use the theorem for the set A+ λ1 · A+ · · ·+ λh · A with
(h + 1) summands, which contains a translate of the original set. It follows that in this case the
claim holds with slightly larger constant implicit in O() notation.
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Our next theorem applies to the case when K is much smaller than h. It shows that then the
dependence on h becomes polynomial under those assumptions. Hence it improves on Theorem
3 in such circumstances.

Theorem 5. Let |A+ A| ≤ K|A| and let |λi| < 2r for i = 1, . . . , h. If h ≥ K, then

|λ1 · A+ · · ·+ λh · A| ≤ (C(K)hf(K))r|A|,

where C(K) = 15e
2K

and f(K) = O(K log8K)

Proof. Again we are going to use induction on r with additional assumption that λ1 = 1. For r =

1 it follows from corollary 2. To show it for greater r we use binary expansion, namely we write
λi as a sum 2λ′i + αi with αi ∈ {0, 1}. Then with λ′ = (1, λ′2, . . . , λ

′
h) and α = (α1, . . . , αh, 2)

we have (just as in the proof of the previous theorem)

|Sλ(A)|
|A|

≤ |Sα(A)|
|A|

|Sλ′(A)|
|A|

.

We can bound the first term using corollary 2 and the fact that 2 · A ⊂ A+ A by

|Sα(A)|
|A|

≤ |(h+ 2)A|
|A|

≤
(

3e(h+ 2)

K

)O(K log8K)

.

Using induction assumption to bound the second term we get

|Sλ′(A)|
|A|

≤ (C(K)hf(K))r−1.

Multiplying the last two equations we get

|Sλ(A)|
|A|

≤
(

3e(h+ 2)

K

)O(K log8K)

(C(K)hf(K))r−1 = (C(K)hf(K))r.

It finishes the proof of the claim with additional assumption. We get rid of this assumption in
the same way as in the previous proof.

Our last theorem considers the case when Λ – the set of λi coefficients – has some additive
structure. In such setting spectacular improvement is possible.

Theorem 6. Let |A + A| ≤ K|A| and let Λ ⊂ [2r]. Furthermore, assume that |Λ + Λ| < L|Λ|.
Then

|λ1 · A+ · · ·+ λh · A| ≤ KO((h+r)L logL)|A|.

Proof. By Chang covering lemmma (with A = Λ, K = L, S = {0}), we know that there is a
set Γ such that Λ ⊂ Span(Γ) and |Λ| = O(L log 2L). Write each λi as a sum λi =

∑|Γ|
j=1 εi,jγj .

Then

|λ1 · A+ · · ·+ λh · A| = |
h∑
i=1

(

|Γ|∑
j=1

εi,jγj) · A| ≤ |
h∑
i=1

|Γ|∑
j=1

εi,jγj · A| = |
|Γ|∑
j=1

h∑
i=1

εi,jγj · A|
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We can use Ruzsa triangle inequality twice (the first time with X1 =
∑h

i=1 εi,1γ1 · A, Y1 =

γ1 · A, Z = γ1 · A
∑h

i=2 εi,jγj · A, the second time with X2 = γ1 · A and Y2 = γ2 · A ) to bound
the last expression by

|
|Γ|∑
j=1

h∑
i=1

εi,jγj · A| ≤
|
∑h

i=1 εi,1γ1 · A+ γ1 · A|
|A|

|γ1 · A+ γ2 · A|
|A|

|γ2 · A+

|Γ|∑
j=2

h∑
i=1

εi,jγj · A|.

Using Plünnecke inequality to bound the term with repeated (up to sign) summand and The-
orem 1 to bound the expression with different summands we obtain

|
|Γ|∑
j=1

h∑
i=1

εi,jγj · A| ≤ KO((h+1)+r)|γ2 · A+

|Γ|∑
j=2

h∑
i=1

εi,jγj · A|

Continuing in this way, we can prove by induction that

|
|Γ|∑
j=1

h∑
i=1

εi,jγj · A| ≤ KO((h+2)+r)|γk · A+

|Γ|∑
j=k

h∑
i=1

εi,jγj · A|,

which for k = |Γ| gives the claim (after another application of Plünnecke inequality).

We conclude with a simple lemma showing once again how additive structure of Λ may influ-
ence the bounds.

Lemma 7. For any i, j, if we take λ′i = λi ± λj and λ′k = λk for k 6= i, we have

|Sλ(A)|
|A|

≤ K3 |Sλ′(A)|
|A|

(1)

Proof. To see this we use the fact that Sλ(A) ⊂ Sλ′ ∓ λj · A. Let λ′′j = 0 and λ′′k = λ′k for k 6= j.
Now we use Ruzsa triangle inequality with X = Sλ′′ , Y = λj · A and Z = λj · A∓ λj · A.

|Sλ(A)|
|A|

≤ |Sλ
′(A)∓ λj · A|
|A|

≤ |Sλ
′(A)|
|A|

|λj · A+ λj · A∓ λj · A|
|λj · A|

.

Now (1) follows from Plünnecke inequality.
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