A. David Christopher
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 24, 2018, Number 1, Pages 49–52
DOI: 10.7546/nntdm.2018.24.1.49-52
Full paper (PDF, 163 Kb)
Details
Authors and affiliations
A. David Christopher
Department of Mathematics, The American College
Tamil Nadu – 625002, India
Abstract
A new proof of Euler’s pentagonal number theorem is obtained.
Keywords
- Partitions
- Euler’s pentagonal number theorem
- Jacobi’s triple product identity
2010 Mathematics Subject Classification
- Primary 05A17
- Secondary 11P81
References
- Andrews, G. E. (1965) A Simple proof of Jacobi’s Triple Product Identity, Proceedings of the American Mathematical Society, 16, 2, 333–334.
- Andrews, G. E. (1984) Generalised Frobenius partitions, Mem. Amer. Math Soc., 49, 301, iv+44 pp.
- Cheema, M. S. (1964) Vector partitions and Combinatorial identities, Math. Comp., 18, 414–420.
- Dyson, F. J. (1969) A new symmetry of partitions, J. Combin. Theory, 7, 56–61.
- Euler, L. (1780) Evolution producti infiniti (1 – x)(1 – x2)(1 – x3)(1 – x4)(1 – x5) etc. in seriem simplicem, Acta Academiae Sci entarum Imperialis petropolitinae 1780, 1783, 47–55.
- Ewell, J. A. (1983) A Simple Proof of Fermat’s Two-Square Theorem, Amer. Math. Monthly, 90, 9, 635–637.
- Franklin, F. (1881) Surle d´evelopment du produit infini (1 – x)(1 – x2)(1 – x3)(1 – x4)…, Comptes Rendus Acad. Sci. Paris, 92, 448–450.
- Hirschhorn, M. D. (1985) A Simple Proof of Jacobi’s Two-Square Theorem, Amer. Math. Monthly, 92, 8, 579–580.
- Sudler, C. (1966) Two enumerative proofs of an identity of Jacobi, Proc. Edinburgh. Math. Soc., 15, 67–71.
- Wei, C., Gong, D. (2011) Euler’s pentagon number theorem implies Jacobi triple product identity, Integers, 11, 6, 811–814.
- Wright, E. M. (1965) An enumerative proof of an identity of Jacobi, J. London Math. Soc., 40, 55–57.
Related papers
Cite this paper
David Christopher, A. (2018). A new proof of Euler’s pentagonal number theorem . Notes on Number Theory and Discrete Mathematics, 24(1), 49-52, DOI: 10.7546/nntdm.2018.24.1.49-52.