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1 History and motivation

The classical statement of Euler’s pentagonal number theorem is
∞∏
n=1

(1− qn) =
∞∑

n=−∞

q
n(3n−1)

2 , where |q| < 1. (1.1)

By expanding the left side of the equation (1.1), one can see that
∞∏
n=1

(1− qn) = 1 +
∞∑
n=1

(re(n)− ro(n)) qn, (1.2)

where re(n) denotes the number of distinct partitions (partitions with distinct parts) of n with
even number of parts, and ro(n) denotes the number of distinct partitions of n with odd number
of parts.

Equations (1.1) and (1.2) together give the following expression:

re(n)− ro(n) =

(−1)k, if n = 3k2±k
2

;

0, otherwise.
(1.3)
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This expression is known as the partition-theoretic interpretation of Euler’s pentagonal num-
ber theorem. Euler’s pentagonal number theorem follows directly from the Jacobi’s triple product
identity

∞∏
m=1

(
1− q2m

) (
1 + q2m−1z2

) (
1 + q2m−1z−2

)
=

∞∑
n=−∞

qn
2

z2n

for q = x
3
2 and z2 = −x 1

2 .
Applications of Euler’s pentagonal number theorem is manifold. Recently, Chuanan Wei and

Dianxuan Gong [10] showed that Euler’s pentagonal number theorem implies Jacobi’s triple prod-
uct identity. Applying Jacobi’s triple product identity, Ewell [6] obtained Fermat’s two squares
theorem. Hirschhorn [8] obtained Jacobi’s two squares theorem as a consequence of Jacobi’s
Triple Product Identity.

Euler [5] proved the classical version of his theorem using induction. Many mathematicians
obtained proofs for Jacobi’s triple product identity (for proof see [1, 2, 3, 9, 11]). Addition to
these proofs, Franklin [7] gave a bijective proof for Euler’s pentagonal number theorem using
Ferrer’s diagram of the partition, and F. J. Dyson [4] gave a combinatorial proof involving the
idea of the rank of a partition.

In this article, we give a new proof for the partition-theoretic version of Euler’s pentagonal
number theorem.

Definition 1.1. Let n be a positive integer. A partition (a1, a2, . . . , ak) of n is said to be a distinct
partition of n if ai > ai+1 for every i ∈ {1, 2, . . . , k − 1}.

2 Proof

Let n be a positive integer. Let Qn be the set of all distinct partitions of n. Define an operator
φ : Qn → Qn by

φ((a1, a2, . . . , ak)) = (a1 + 1, a2 + 1, . . . , aak + 1, aak+1, . . . , ak−1)

when ak < k.
Let Qn,s be the set of all distinct partitions of n with its least part s such that s < number of

parts.
Put A1 = Qn,1. Define φ : A1 → Qn. Since every partition in φ(A1) has least part greater

than 1, we have φ(A1) ∩ A1 = ∅. Since each partition in A1 has identical least part, φ cannot
be a many-to-one mapping. Thus, φ is an one-to-one mapping. Moreover, we see that image of
every partition with even (resp. odd) number of parts in A1 under φ has odd (resp. even) number
of parts. Consequently, the number of even partitions (partitions with even number of parts) and
odd partitions (partitions with odd number of parts) in φ(A1) ∪ A1 are same.

Define A2 = (Qn \ (A1 ∪ φ(A1))∩Qn,2. Consider the mapping φ : A2 → Qn. Following the
line of argument in the last paragraph, we again get that φ(A2) ∩A2 = ∅ and the number of even
partitions and odd partitions in φ(A2) ∪ A2 are same.

For k ≥ 3, define Ak = (Qn \ ∪k−1
i=1 (Ai ∪ φ(Ai))) ∩ Qn,k. We see that there is no possibility

for the existence of a distinct partition say π2 such that π2 ∈ Ar and φ(π2) ∈ φ(Al) for some
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l < r. For otherwise, there will be a distinct partition say π1 such that φ(π1) = φ(π2) with
π1 6= π2. This gives (a1+1, a2+1, . . . , al+1, al+1, . . . , ak−1) = (b1+1, b2+1, . . . , bl+1, bl+1+

1, . . . , br + 1, br+1, . . . , bk−1), where π1 = (a1, . . . , ak) and π2 = (b1, . . . , bk) with ak = l and
bk = r. Consider the partition π∗ = (b1, b2, . . . , bl, bl+1 + 1, . . . , br + 1, br+1, . . . , bk−1, bk, l).
From the above equality we have bl+1 + 1 < bl and since l < bk < k, one can see that π∗ is a
distinct partition of n with least part l such that l is less than k. Furthermore, φ(π∗) = π2. Thus,
π2 ∈ φ(Al) which implies π2 /∈ Ar, which is a contradiction.

Accordingly, we have the following conclusions:

1. φ(Ak) ∩ Ak = ∅ for every k ∈ {1, 2, . . .}.

2. The number of even and odd partitions in ∪i≥1(Ai ∪ φ(Ai)) are same.

LetQ∗n = ∪i≥1(Ai∪φ(Ai)). A closer examination of the setQn\Q∗n completes the proof. Let
π = (a1, a2, . . . , ak) ∈ Qn\Q∗n. Define c(π) to be the largest integer l ≥ 2 for which a1, a2, . . . , al
satisfies a2 − a1 = a3 − a2 = · · · = al − al−1 = 1. We claim that c(π) = k. For if c(π) = s for
some s < k, then it is plain that we can write π = (b, b − 1, . . . , b − (s − 1), as+1, . . . , ak) with
(b−(s−1))−as+1 > 1. Now consider the partition π1 = (b−1, b−2, . . . , b−s, as+1, . . . , ak, s).
From the membership of π, we have ak ≥ k. Since s < k, we have ak−s > 0. Thus π1 is a distinct
partition of n. Also, we have φ(π1) = π. If π1 ∈ Ai for some i, then we have π ∈ φ(Ai), which
leads to the conclusion that π ∈ Q∗n which is a contradiction. On the other hand, if π1 ∈ φ(Aj) for
some j, then there exist a distinct partition say π2 = (b1, b2, . . . , bk+2) such that φ(π2) = π1. Note
that 1 ≤ bk+2 < s. From this it follows that 1 ≤ bk+2 < k and bk+2 < s. Since φ(π2) = π1, we
have the following equalities: b1 +1 = b− 1, b2 +1 = b− 2, . . . , bbk+2

+1 = b− bk+2, bbk+2+1 =

b− bk+2 − 1, . . .; which leads to the equality bbk+2
− bbk+2+1 = 0 which is a contradiction. Thus

c(π) = k. Accordingly, π is of the form π = (ak + k − 1, ak + k − 2+, . . . , ak + 1, ak).
We claim that ak can assume only two values namely k or k + 1. From the membership

of π it follows that ak ≥ k. Suppose that ak > k + 1. Then consider the partition π1 =

(ak + (k − 2), . . . , ak, ak − 1, k). Clearly, π1 is a distinct partition of n. We see that φ(π1) = π,

which implies that, π1 /∈ Qn \ Q∗n. This in turn implies that π1 ∈ Q∗n. If π1 ∈ Ai for some i,
then we would have φ(π1) ∈ φ(Ai), that is, π ∈ Q∗n which is a contradiction. If π1 ∈ φ(Aj)

for some j, then there will be a distinct partition of n say π2 = (b1, b2, . . . , bk+2) such that
φ(π2) = π1. Now we make it a point that bk+2 < k. Since φ(π2) = π1, we have the equalities
b1 + 1 = ak + (k − 2), b2 + 1 = ak + (k − 3), . . . , bbk+2

+ 1 = ak + (k − 1) − bk+2, bbk+2+1 =

ak+(k−1)− (bk+2+1), . . . ; this gives bbk+2
= bbk+2+1, which is absurd. Thus the claim follows.

From these observations, we get that re(n)− ro(n) = 0 if n is not of the forms: k+(k+1)+

· · ·+ (k + (k− 1)) and (k + 1) + (k + 2) + · · ·+ (k + k), that is, when n 6= 3k2±k
2

. On the other
hand, if n = 3k2±k

2
then we have re(n) − ro(n) = 1 when k is even, and re(n) − ro(n) = −1

when k is odd.
This completes the proof. �
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