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1 History and motivation

The classical statement of Euler’s pentagonal number theorem is

[Ta-a)=Y ¢"%, wherelq| <1. (1.1)
n=1

n=—oo

By expanding the left side of the equation (1.1), one can see that
[Ta-a) =1+ (re(n) —ro(n) q", (1.2)
n=1 n=1

where r.(n) denotes the number of distinct partitions (partitions with distinct parts) of n with
even number of parts, and r,(n) denotes the number of distinct partitions of n with odd number
of parts.

Equations (1.1) and (1.2) together give the following expression:

(_1)k7 ifn = 31@2;1@;

0, otherwise.

(1.3)
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This expression is known as the partition-theoretic interpretation of Euler’s pentagonal num-
ber theorem. Euler’s pentagonal number theorem follows directly from the Jacobi’s triple product
identity

H (1 i q2m) (1 + q2m—122) (1 +q2m—lz—2) _ Z qn222n
m=1 n=—o0
forg =z and 22 = —z2.

Applications of Euler’s pentagonal number theorem is manifold. Recently, Chuanan Wei and
Dianxuan Gong [10] showed that Euler’s pentagonal number theorem implies Jacobi’s triple prod-
uct identity. Applying Jacobi’s triple product identity, Ewell [6] obtained Fermat’s two squares
theorem. Hirschhorn [8] obtained Jacobi’s two squares theorem as a consequence of Jacobi’s
Triple Product Identity.

Euler [5] proved the classical version of his theorem using induction. Many mathematicians
obtained proofs for Jacobi’s triple product identity (for proof see [1, 2, 3, 9, 11]). Addition to
these proofs, Franklin [7] gave a bijective proof for Euler’s pentagonal number theorem using
Ferrer’s diagram of the partition, and F. J. Dyson [4] gave a combinatorial proof involving the
idea of the rank of a partition.

In this article, we give a new proof for the partition-theoretic version of Euler’s pentagonal
number theorem.

Definition 1.1. Let n be a positive integer. A partition (a1, as, . . ., ai) of n is said to be a distinct
partition of n if a; > a;y1 foreveryi € {1,2,... .k —1}.

2 Proof

Let n be a positive integer. Let (), be the set of all distinct partitions of n. Define an operator

¢ Qn — Qn by
o((ar, a9, ... a;) = (a1 + Lyaes+1,... a0, + 1,00, 41, -, 0k-1)

when a;, < k.

Let (), s be the set of all distinct partitions of n with its least part s such that s < number of
parts.

Put A; = @Q,1. Define ¢ : Ay — @,. Since every partition in ¢(A;) has least part greater
than 1, we have ¢(A;) N A; = (. Since each partition in A; has identical least part, ¢ cannot
be a many-to-one mapping. Thus, ¢ is an one-to-one mapping. Moreover, we see that image of
every partition with even (resp. odd) number of parts in A; under ¢ has odd (resp. even) number
of parts. Consequently, the number of even partitions (partitions with even number of parts) and
odd partitions (partitions with odd number of parts) in ¢(A;) U A; are same.

Define As = (@, \ (A1 U @(A1)) N Qy0. Consider the mapping ¢ : Ay — @,,. Following the
line of argument in the last paragraph, we again get that ¢(A,) N Ay = () and the number of even
partitions and odd partitions in ¢(As) U A, are same.

For k > 3, define Aj, = (Q,, \ U= (A; U #(4;))) N Q,x. We see that there is no possibility
for the existence of a distinct partition say 7o such that my € A, and ¢(my) € ¢(A;) for some
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[ < r. For otherwise, there will be a distinct partition say 7 such that ¢(m) = ¢(m2) with
m1 # mo. This gives (a1 +1, a0+ 1,...;a;+ 1, a1, ... a5-1) = (b1 +1,00+1, ... b+ 1,b01+
L....b, + 1,by41,...,bk_1), where 1y = (aq,...,a;) and g = (by,...,b;) with a;, = [ and
by = r. Consider the partition 7* = (by,ba, ..., b, bipy + 1,... b, + 1,001, . b1, bg, ).
From the above equality we have 0;,; + 1 < 0; and since [ < b, < k, one can see that 7 is a
distinct partition of n with least part [ such that [ is less than k. Furthermore, ¢(7*) = my. Thus,
9 € ¢(A;) which implies 7, ¢ A,., which is a contradiction.
Accordingly, we have the following conclusions:

1. ¢(Ax) N A, =0forevery k € {1,2,...}.
2. The number of even and odd partitions in U;>1(A4; U ¢(A4;)) are same.

Let Q = U;>1(A;U¢(A;)). A closer examination of the set @, \ @ completes the proof. Let
= (a1,a9,...,a;) € Q,\Q%. Define ¢(m) to be the largest integer [ > 2 for which ay, as, . . . , q

satisfies as — ay = a3 —as = -+ = a; — a;—1 = 1. We claim that ¢(7) = k. For if ¢(7) = s for
some s < k, then it is plain that we can write 7 = (b,b —1,...,b — (s — 1), as41, ..., ax) with
(b—(s—1))—asy1 > 1. Now consider the partitionm = (b—1,0—2,...,b—s,a541,...,a,S).

From the membership of 7, we have a;, > k. Since s < k, we have ay—s > 0. Thus 7 is a distinct
partition of n. Also, we have ¢(m;) = 7. If m; € A, for some i, then we have © € ¢(A4;), which
leads to the conclusion that 7 € @)}, which is a contradiction. On the other hand, if 1, € ¢(A;) for
some j, then there exist a distinct partition say mo = (b1, ba, . . ., bg12) such that ¢(m) = 7. Note
that 1 < by, o < s. From this it follows that 1 < by o < k and byyo < s. Since ¢(ms) = 7, we
have the following equalities: by +1=b—1,bp+1=b—2,..., by, +1 =b—bpy2,bp, 41 =
b — b2 — 1,...; which leads to the equality by, ,, — by, ,,+1 = 0 which is a contradiction. Thus
c(m) = k. Accordingly, 7 is of the form 7 = (ap + k — 1,ap + k — 2+,. .., ar + 1, ax).

We claim that a; can assume only two values namely £ or £ + 1. From the membership
of 7 it follows that a;, > k. Suppose that a, > k + 1. Then consider the partition m =
(ar, + (K —2),...,ar,ar — 1, k). Clearly, m is a distinct partition of n. We see that ¢(m ) = T,
which implies that, 7, ¢ @, \ Q7. This in turn implies that 7, € Q. If 7 € A; for some 4,
then we would have ¢(m;) € ¢(A4;), thatis, 7 € @} which is a contradiction. If m; € ¢(A,)
for some j, then there will be a distinct partition of n say mo = (b1, ba,...,bgr2) such that
¢(my) = 7. Now we make it a point that b » < k. Since ¢(my) = 71, we have the equalities
bi+l=ap+k—-2),bo+1=ar+(k—3),....,0y,, +1=ap+ (k—1) = bry2, by, 41 =
ap+(k—1) = (bgy2+1),...; this gives by, ,, = by, ., 41, Which is absurd. Thus the claim follows.

From these observations, we get that r.(n) — r,(n) = 0 if n is not of the forms: k+ (k+ 1) +
o+ (k+(k—1))and (k+1)+ (k+2)+---+ (k+ k), that is, when n # %2% On the other

hand, if n = 3’“2% then we have r.(n) — r,(n) = 1 when k is even, and 7.(n) — r,(n) = —1
when £ is odd.
This completes the proof. U
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