Claudio Pita-Ruiz
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 24, 2018, Number 1, Pages 16–42
DOI: 10.7546/nntdm.2018.24.1.16-42
Full paper (PDF, 261 Kb)
Details
Authors and affiliations
Claudio Pita-Ruiz
Facultad de Ingenierıa, Universidad Panamericana
Augusto Rodin 498, Mexico, Ciudad de Mexico, 03920, Mexico
Abstract
We consider the sequence , product of the rp-th degree n-polynomial , where a, b ∈ ℂ, a ≠ 0, r, p ∈ ℕ, and the -th degree n-polynomial , where αs, βs ∈ ℂ, rs, ps ∈ ℕ, s = 2, …, l. In the expansion of the polynomial in terms of the binomials , , the resulting coefficients are the generalized Eulerian numbers we consider in this work (the case P(n) = 1, a = 1, b = 0, r = 1 corresponds to the standard Eulerian numbers). We obtain results on symmetries, recurrences, row sums, and alternating row sums, that generalize the corresponding well-known results for the standard Eulerian numbers. The main tool we use to obtain our results throughout the work, is the Z-transform of sequences.
Keywords
- Generalized Eulerian numbers
2010 Mathematics Subject Classification
- 11B83
References
- Carlitz, L. (1952) Note on a Paper of Shanks, Amer. Math. Monthly, 59, 4, 239–241.
- Carlitz, L. (1978) A Note on q-Eulerian Numbers, J. Combin. Theory Ser. A, 25, 90–94.
- Carlitz, L. (1959) Eulerian numbers and polynomials, Math. Mag., 32, 247–260.
- Carlitz, L. (1954) q-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc., 76, 332–350.
- Carlitz, L. (1975) A combinatorial property of q-Eulerian numbers, Amer. Math. Monthly, 82, 51–54.
- Carlitz, L. (1960) Eulerian numbers and polynomials of higher order, Duke Math. J., 27, 401–423.
- Carlitz, L. (1964) Extended Bernoulli and Eulerian numbers, Duke Math. J., 31, 667–689.
- Carlitz, L., & Riordan, J. (1953) Congruences for Eulerian Numbers, Duke Math. J., 20, 339–343.
- Dilcher, K. Bernoulli and Euler Polynomials, Digital Library of Mathematical Functions, Chapter 24. Available at: http://dlmf.nist.gov/24.
- Euler, L. (1755) Institutiones Calculi Differentialis, Academiae Imperialis Scientiarum Petropolitanae.
- Foata, D. (2010) Eulerian Polynomials: from Euler’s Time to the Present, in “The Legacy of Alladi Ramakrishnan in the Mathematical Sciences”, Springer, 253–273.
- Foata, D., & Schutzenberger, M. P. (1970) Theorie geometrique des polynomes Euleriens, Lecture Notes in Mathematics, Vol. 138, Springer.
- Gould, H. W. (1972) Combinatorial Identities, Morgantown, W. Va.
- Graf, U. (2004) Applied Laplace Transforms and z-Transforms for Scientists and Engineers: A Computational Approach using a Mathematica Package, Birkh¨auser.
- Hsu, L. C., & Shiue, P. J. S. (1999) On certain summation problems and generalizations of Eulerian polynomials and numbers, Discrete Math., 204, 237–247.
- Koutras, M. V. (1994) Eulerian Numbers Associated with Sequences of Polynomials, Fibonacci Quart., 32, 44–57.
- Lehmer, D. H. (1982) Generalized Eulerian Numbers, J. Combin. Theory Ser. A, 32, 195–215.
- Lin, Z. (2013) On some generalized q-Eulerian polynomials, DMTCS Proc. AS., 439–450.
- Petersen, T. K. (2015) Eulerian Numbers, Birkhauser.
- Savage, C. D., & Viswanathan, G., The 1/k-Eulerian Polynomials, Available online at: http://www4.ncsu.edu/~savage/PAPERS/The_1_over_k_Eulerian_Polynomials.pdf.
- Shanks, E. B. (1951) Iterated Sums of Powers of the Binomial Coefficients, Amer. Math. Monthly, 58, 404–407.
- Stanley, R. P. (1997) Enumerative Combinatorics, Vol. 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press.
- Vilch, R. (1987) Z Transform. Theory and Applications, D. Reidel Publishing Company.
- Worpitzky, J. (1883) Studien ¨uber die Bernoullischen und Eulerschen Zahlen, J. Reine Angew. Math., 94, 203–232.
- Xiong, T., Tsao, H. P., & Hall, J. I. (2013) General Eulerian Numbers and Eulerian Polynomials, Journal of Mathematics, Vol. 2013, ID 629132.
Related papers
- Shiue, P. J., Huang, S. C., & Reyes, J. E. (2021). Algorithms for computing sums of powers of arithmetic progressions by using Eulerian numbers. Notes on Number Theory and Discrete Mathematics, 27(4), 140-148.
- Shiue, P. J., Huang, S. C., & Jameson, E. (2020). On algorithms for computing the sums of powers of arithmetic progressions. Notes on Number Theory and Discrete Mathematics, 26 (4), 113-121.
Cite this paper
Pita-Ruiz, C. (2018). On a generalization of Eulerian numbers. Notes on Number Theory and Discrete Mathematics, 24(1), 16-42, DOI: 10.7546/nntdm.2018.24.1.16-42.