Elif Tan
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 23, 2017, Number 4, Pages 56–65
Full paper (PDF, 168 Kb)
Details
Authors and affiliations
Elif Tan
Department of Bioinformatics and Mathematical Modelling
Department of Mathematics, Ankara University
Ankara, Turkey
Abstract
In this paper, we give some basic properties of the bi-periodic Horadam sequences which generalize the known results for the bi-periodic Fibonacci and Lucas sequences. Also, we obtain some new identities for the bi-periodic Lucas sequences.
Keywords
- Horadam sequence
- Conditional sequence
- Bi-periodic Fibonacci sequence
AMS Classification
- 11B39
- 05A15
References
- Bilgici, G. (2014) Two generalizations of Lucas sequence. Appl. Math. Comput., 245, 526–538.
- Edson, M., Lewis, S. & Yayenie, O. (2011) The k-Periodic Fibonacci Sequence and an Extended Binet’s Formula, Integers, 11, 739–751.
- Edson, M. & Yayenie, O. (2009) A new generalizations of Fibonacci sequences and extended Binet’s Formula, Integers, 9, 639–654.
- Horadam, A. F. (1965) Basic Properties of a Certain Generalized Sequence of Numbers, Fibonacci Quart., 3(3), 161–176.
- Panario, D., Sahin, M. &Wang, Q. (2011) A family of Fibonacci-like conditional sequences, Integers, 13 (2013), (A78).
- Sahin, M. (2011) The Gelin–Cesaro identity in some conditional sequences, Hacet. J. Math. Stat., 40(6), 855–861.
- Tan, E. & Ekin, A. B. (2014) On convergence properties of Fibonacci-like conditional sequences. Commun. Fac. Sci. Univ. Ank. S´er. A1 Math. Stat., 63(2), 119–127.
- Tan, E. & Ekin, A. B. (2017) Some Identities On Conditional Sequences By Using Matrix Method. Miskolc Mathematical Notes, 18(1), 469–477.
- Tan, E. & Ekin, A. B. (2015) Bi-Periodic Incomplete Lucas Sequences. Ars Combinatoria, 123, 371–380.
- Yayenie, O. (2011) A note on generalized Fibonacci sequence, Appl. Math. Comput., 217, 5603–5611.
Related papers
Cite this paper
Tan, E. (2017). Some Properties of the Bi-periodic Horadam Sequences. Notes on Number Theory and Discrete Mathematics, 23(4), 56-65.