Raj Kumar Mistri
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 23, 2017, Number 4, Pages 34–41
Full paper (PDF, 157 Kb)
Corrigendum
Details
Authors and affiliations
Raj Kumar Mistri
Department of Mathematics, Harish-Chandra Research Institute, HBNI
Chhatnag Road, Jhunsi, Allahabad – 211 019, India
Abstract
Let A⊆ Z and B ⊆ Z be nonempty finite sets and let r be a nonzero integer. The sumof dilates of A and B is defined as A + r · B := {a + rb : a ∈ A and b ∈ B}. Finding nontrivial lower bound for the sum of dilates is an important problem in additive combinatorics and it has applications in sum-product problems. In case of A = B, a recent result of Freiman et al. states that if r ≥ 3, then |A + r · A| ≥ 4|A| – 4. We generalize this result for the sum of dilates A + r · B for two sets A and B, where r is an integer with |r| ≥ 3.
Keywords
- Sum of dilates
- Minkowski sumsets
- Sum-product problem
- Additive combinatorics
AMS Classification
- 11B75
References
- Balog, A., & Shakan, G. (2014) On the sum of dilations of a set, Acta Arith., 164, 153–162.
- Balog, A., & Shakan, G. (2015) Sum of dilates in vector spaces, North-West. Eur. J. Math., 1, 46–54.
- Bukh, B. (2008) Sums of dilates, Combin. Probab. Comput., 17(5), 627–639.
- Cilleruelo, J., Hamidoune, Y. O., & Serra, O. (2009) On sums of dilates, Combin. Probab. Comput., 18(6), 871–880.
- Cilleruelo, J., Silva, M., & Vinuesa, C. (2010) A sumset problem, J. Comb. Number Theory, 2(1), 79–89.
- Du, S., Cao, H., & Sun, Z. (2014) On a sumset problem for integers, Electron. J. Combin., 21(1), Paper #P1.13.
- Freiman, G. A., Herzog, M., Longobardi, P., Maj, M., & Stanchescu, Y. V. (2014) Direct and inverse problems in additive number theory and in non-abelian group theory, European J. Combin., 40, 42–54.
- Garaev, M. Z. (2007) An explicit sum-product estimate in Fp norms, Israel J. Math., 152, 157–179.
- Hamidoune, Y. O., & Plagne, A. (2002) A generalization of Freiman’s 3k–3 theorem, Acta Arith., 103(2), 147–156.
- Hamidoune, Y. O., & Rue, J. (2011) A lower bound for the size of a Minkowski sum of dilates, Combin. Probab. Comput., 20(2), 249–256.
- Konyagin, S., & Laba, I. (2006) Distance sets of well-distributed planar sets for polygonal norms, Israel J. Math., 152, 157–179.
- Lev, V. F., & Smeliansky, P. Y. (1995) On addition of two distinct sets of integers, Acta Arith., 70(1), 85–91.
- Ljujic, Z. (2013) A lower bound for the size of a sum of dilates, J. Comb. Number Theory, 5(1), 31–51.
- Nathanson, M. B. (1996) Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer.
- Nathanson, M. B. (2008) Inverse problems for linear forms over finite sets of integers, J. Ramanujan Math. Soc., 23(2), 151–165.
- Plagne, A. (2011) Sums of dilates in groups of prime order, Combin. Probab. Comput., 20(6), 867–873.
- Plagne, A., & Tringali, S. (2016) Sums of dilates in ordered groups, Comm. Algebra, 44(12), 5223–5236.
- Pontiveros, G. F. (2013) Sums of dilates in Zp, Combin. Probab. Comput., 22(2), 282–293.
- Shakan, G. (2016) Sum of many dilates, Combin. Probab. Comput., 25(3), 460–469.
- Stanchescu, Y. V. (1996) On addition of two distinct sets of integers, Acta Arith., 75(2), 191–194.
Corrigendum
- Mistri, R. K. (2018). Corrigendum to “Sum of dilates of two sets” [Notes on Number Theory and Discrete Mathematics, Vol. 23, 2017, No. 4, 34–41]. Notes on Number Theory and Discrete Mathematics, 24(1), 136.
Related papers
Cite this paper
Mistri, R. K. (2017). Sum of dilates of two sets. Notes on Number Theory and Discrete Mathematics, 23(4), 34-41.