József Sándor

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 23, 2017, Number 4, Pages 18—21

**Download full paper: PDF, 133 Kb**

## Details

### Authors and affiliations

József Sándor

* Department of Mathematics, Babeș-Bolyai University
Cluj-Napoca, Romania
*

### Abstract

In this note we point out priority results and new proofs related to the bounds for the Neuman–Sándor mean in terms of the power means and the identric means.

### Keywords

- Bounds
- Neuman–Sándor mean
- Identric mean
- Power mean

### AMS Classification

- 26E60

### References

- Alzer, H. (1988), Aufgabe 987, Elemente der Mathematik, 43, 93.
- Bullen, P. S. (2003), Handbook of means and their inequalities, Kluwer Acad. Publ.
- Chu, Y.-M. & Long, B.-Y. (2013), Bounds of the Neuman–Sándor mean using power and identric means, Abstr. Appl. Anal., 2013, ID 832591, 6 pages.
- Neuman, E. & Sándor, J. (2003) On the Schwab–Bachardt mean, Mathematica Pannonica, 14(2), 253–266.
- Neuman, E. & Sándor, J. (2006) On the Schwab–Bachardt mean II, Mathematica Pannonica, 17(1), 49–59.
- Neuman, E. & Sándor, J. (2009) Companion inequalities for certain bivariate means, Applicable Analysis Discr. Math., 3, 46–51.
- Sándor, J. (1990) On the identric and logarithmic means, Aequationes Mathematicae, 40(1), 261–270.
- Sándor, J. (1995) On certain inequalities for means, J. Math. Anal. Appl., 189, 602–606.
- Sándor, J. (2001) On certain inequalities for means, III, Archiv der Mathematik, 76(1), 34– 40.
- Yang, Z.-H. (2012) Sharp power mean bounds for Neuman–Sándor mean, http:// arxiv.org/abs/1208.0895.
- Yang, Z.-H. (2013) Estimates for Neuman–Sándor mean by power means and their relative errors, J. Math. Ineq., 7(4), 711–726.

## Related papers

## Cite this paper

APASándor, J. (2017). A Note on Bounds for the Neuman–Sándor Mean Using Power and Identric Means. Notes on Number Theory and Discrete Mathematics, 23(4), 18-21.

ChicagoSándor, József. “A Note on Bounds for the Neuman–Sándor Mean Using Power and Identric Means.” Notes on Number Theory and Discrete Mathematics 23, no. 4 (2017): 18-21.

MLASándor, József. “A note on bounds for the Neuman–Sándor mean using power and identric means.” Notes on Number Theory and Discrete Mathematics 23.4 (2017): 18-21. Print.