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Abstract: In this note we point out priority results and new proofs related to the bounds for
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1 Introduction

For k ∈ R the k-th power mean Ap(a, b), Neuman–Sándor Mean M(a, b) [4] and the identric
mean I(a, b) of two positive real numbers a and b are defined by

Ak(a, b) =

(
ak + bk

2

)1/k

(k 6= 0);A0(a, b) =
√
ab = G(a, b) (1)

M(a, b) =
a− b

2arcsinh
(
(a− b)(a+ b)

)(a 6= b);M(a, a) = a (2)

I(a, b) =
1

e

(
bb/aa

)1/(b−a)
(a 6= b); I(a, a) = a (3)

respectively, where arcsinh(x) = log(x+
√
1 + x2) denotes the inverse hyperbolic sine function.

While the kth power means and the identric mean have been studied extensively in the last 30–
40 years (see e.g. [7] or [2] for surveys of results), the Neuman–Sándor mean has been introduced
in 2003 [4] and studied also in 2006 [5], as a particular Schwab–Borchardt mean. In the last 10
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years, the Neuman–Sándor mean has been studied by many authors, for many references, see e.g.
the papers [10] and [11], [3].

In 2012 and 2013, independently Z.-H. Yang [10] and Y.-M. Chu, B.-Y. Long [3] have con-
sidered the bounds

Ar < M < A4/3, (4)

where M = M(a, b) for a 6= b, etc; and r =
log 2

log log(3 + 2
√
2)

= 1.244 . . . Also, the constants r

and 4/3 are best possible.Though not mentioned explicitely, the upper bound of (4) is due to E.
Neuman and J. Sándor. Indeed, they proved the strong inequalities (see also [3]):

M(a, b) <
2A+Q

3
<

[
He(a2, b2)

]1/2
< A4/3(a, b), (5)

where He(x, y) =
x+
√
xy + y

3
denotes the Heronian mean and

A = A(a, b) = A1(a, b);Q = Q(a, b) =

(
a2 + b2

2

)1/2

= A2(a, b).

The first inequality of (5) appears in [4], while the second one results by remarking that

He(a2, b2) =
2a2 + b2

3
=

Q2 + 2A2

3
and the fact that

Q2 + 2A2

3
>

(
2A+Q

3

)2

.

The last inequality of (5) follows from

He(a, b) < A2/3(a, b) (6)

(see [9], [6]) applied to a := a2, b := b2.

We note also that for application purposes, we may choose 1.2 =
6

5
in place of r in (4), so the

following bounds (though, the lower bound slightly weaker) may be stated:

A6/5 < M < A4/3 (7)

In the recent paper [3], M is compared also to the identric mean I, in the following manner:

1 <
M

I
< c, (8)

where c =
e

2 log(1 +
√
2)

and M = M(a, b) for a 6= b; etc.

Also, the constants 1 and c in (8) follows from earlier known results. Also, the optimality of
constants follows from the proofs of these known results.

2 Main results

In [4] it is shown that

1 <
M

A
<

1

arcsinh(1)
=

1

log(1 +
√
2)
, (9)
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where M = M(a, b) for a 6= b; etc.
Now, by a result of H. Alzer [1] one has

1 <
A

I
<

e

2
(10)

We note that inequality (10) has been rediscovered many times. See e.g. the author’s papers
[6], [8].

Now, by a simple multiplication of (9) and (10), we get (8).
For the proof of the fact that 1 and c are best possible, we shall use the proofs of (9) and (10)

from [4] resp. [6]. In [4] it is shown that

M

A
=

z

arcsinhz
, where z =

b− a

b+ a
. (11)

Let b > a. Then the function
f1(z) =

z

arcsinhz

is strictly increasing in (0, 1). Put
b

a
= x. Then z =

x− 1

x+ 1
is a strictly increasing function of

x > 1. Therefore f1(z), as a composite function, will be strictly increasing also on x ∈ (1,+∞).

For the proof of (10) in [6] it is shown that

f2(x) =
A(x, 1)

I(x, 1)

is strictly increasing of x > 1.

Now, remarking that
M(x, 1)

I(x, 1)
= f1

(
z(x)

)
· f2(x) = g(x),

from the above, we get that g(x) is a strictly increasing function, as the product of two functions
having the same property. This gives

lim
x→1

g(x) < g(x) < lim
x→∞

g(x).

As lim
x→1

g(x) = lim
x→1

f1(z(x)) · lim
x→1

f2(x) = 1 and lim
x→∞

g(x) = lim
x→∞

f1(z(x)) · lim
x→∞

f2(x) =

1

log(1 +
√
2)
· e
2
= c we get the optimality of the constants from (8).

We note that the proof of (8) given in [3] is complicated, and based on subsequent derivatives
of functions.
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