A note on bounds for the Neuman-Sándor mean using power and identric means

József Sándor
Department of Mathematics, Babeş-Bolyai University
Cluj-Napoca, Romania

Received: 8 February
Accepted: 29 October 2017

Abstract

In this note we point out priority results and new proofs related to the bounds for the Neuman-Sándor mean in terms of the power means and the identric means.

Keywords: Bounds, Neuman-Sándor mean, Identric mean, Power mean.
AMS Classification: 26E60.

1 Introduction

For $k \in \mathbb{R}$ the k-th power mean $A_{p}(a, b)$, Neuman-Sándor Mean $M(a, b)$ [4] and the identric mean $I(a, b)$ of two positive real numbers a and b are defined by

$$
\begin{gather*}
A_{k}(a, b)=\left(\frac{a^{k}+b^{k}}{2}\right)^{1 / k}(k \neq 0) ; A_{0}(a, b)=\sqrt{a b}=G(a, b) \tag{1}\\
M(a, b)=\frac{a-b}{2 \operatorname{arcsinh}((a-b)(a+b))}(a \neq b) ; M(a, a)=a \tag{2}\\
I(a, b)=\frac{1}{e}\left(b^{b} / a^{a}\right)^{1 /(b-a)}(a \neq b) ; I(a, a)=a \tag{3}
\end{gather*}
$$

respectively, where $\operatorname{arcsinh}(x)=\log \left(x+\sqrt{1+x^{2}}\right)$ denotes the inverse hyperbolic sine function.
While the k th power means and the identric mean have been studied extensively in the last 3040 years (see e.g. [7] or [2] for surveys of results), the Neuman-Sándor mean has been introduced in 2003 [4] and studied also in 2006 [5], as a particular Schwab-Borchardt mean. In the last 10
years, the Neuman-Sándor mean has been studied by many authors, for many references, see e.g. the papers [10] and [11], [3].

In 2012 and 2013, independently Z.-H. Yang [10] and Y.-M. Chu, B.-Y. Long [3] have considered the bounds

$$
\begin{equation*}
A_{r}<M<A_{4 / 3} \tag{4}
\end{equation*}
$$

where $M=M(a, b)$ for $a \neq b$, etc; and $r=\frac{\log 2}{\log \log (3+2 \sqrt{2})}=1.244 \ldots$ Also, the constants r and $4 / 3$ are best possible.Though not mentioned explicitely, the upper bound of (4) is due to E. Neuman and J. Sándor. Indeed, they proved the strong inequalities (see also [3]):

$$
\begin{equation*}
M(a, b)<\frac{2 A+Q}{3}<\left[H e\left(a^{2}, b^{2}\right)\right]^{1 / 2}<A_{4 / 3}(a, b) \tag{5}
\end{equation*}
$$

where $H e(x, y)=\frac{x+\sqrt{x y}+y}{3}$ denotes the Heronian mean and

$$
A=A(a, b)=A_{1}(a, b) ; Q=Q(a, b)=\left(\frac{a^{2}+b^{2}}{2}\right)^{1 / 2}=A_{2}(a, b)
$$

The first inequality of (5) appears in [4], while the second one results by remarking that $H e\left(a^{2}, b^{2}\right)=\frac{2 a^{2}+b^{2}}{3}=\frac{Q^{2}+2 A^{2}}{3}$ and the fact that $\frac{Q^{2}+2 A^{2}}{3}>\left(\frac{2 A+Q}{3}\right)^{2}$.

The last inequality of (5) follows from

$$
\begin{equation*}
H e(a, b)<A_{2 / 3}(a, b) \tag{6}
\end{equation*}
$$

(see [9], [6]) applied to $a:=a^{2}, b:=b^{2}$.
We note also that for application purposes, we may choose $1.2=\frac{6}{5}$ in place of r in (4), so the following bounds (though, the lower bound slightly weaker) may be stated:

$$
\begin{equation*}
A_{6 / 5}<M<A_{4 / 3} \tag{7}
\end{equation*}
$$

In the recent paper [3], M is compared also to the identric mean I, in the following manner:

$$
\begin{equation*}
1<\frac{M}{I}<c \tag{8}
\end{equation*}
$$

where $c=\frac{e}{2 \log (1+\sqrt{2})}$ and $M=M(a, b)$ for $a \neq b$; etc.
Also, the constants 1 and c in (8) follows from earlier known results. Also, the optimality of constants follows from the proofs of these known results.

2 Main results

In [4] it is shown that

$$
\begin{equation*}
1<\frac{M}{A}<\frac{1}{\operatorname{arcsinh}(1)}=\frac{1}{\log (1+\sqrt{2})} \tag{9}
\end{equation*}
$$

where $M=M(a, b)$ for $a \neq b$; etc.
Now, by a result of H. Alzer [1] one has

$$
\begin{equation*}
1<\frac{A}{I}<\frac{e}{2} \tag{10}
\end{equation*}
$$

We note that inequality (10) has been rediscovered many times. See e.g. the author's papers [6], [8].

Now, by a simple multiplication of (9) and (10), we get (8).
For the proof of the fact that 1 and c are best possible, we shall use the proofs of (9) and (10) from [4] resp. [6]. In [4] it is shown that

$$
\begin{equation*}
\frac{M}{A}=\frac{z}{\operatorname{arcsinh} z}, \text { where } z=\frac{b-a}{b+a} . \tag{11}
\end{equation*}
$$

Let $b>a$. Then the function

$$
f_{1}(z)=\frac{z}{\operatorname{arcsinh} z}
$$

is strictly increasing in $(0,1)$. Put $\frac{b}{a}=x$. Then $z=\frac{x-1}{x+1}$ is a strictly increasing function of $x>1$. Therefore $f_{1}(z)$, as a composite function, will be strictly increasing also on $x \in(1,+\infty)$.

For the proof of (10) in [6] it is shown that

$$
f_{2}(x)=\frac{A(x, 1)}{I(x, 1)}
$$

is strictly increasing of $x>1$.
Now, remarking that

$$
\frac{M(x, 1)}{I(x, 1)}=f_{1}(z(x)) \cdot f_{2}(x)=g(x)
$$

from the above, we get that $g(x)$ is a strictly increasing function, as the product of two functions having the same property. This gives

$$
\lim _{x \rightarrow 1} g(x)<g(x)<\lim _{x \rightarrow \infty} g(x) .
$$

As $\lim _{x \rightarrow 1} g(x)=\lim _{x \rightarrow 1} f_{1}(z(x)) \cdot \lim _{x \rightarrow 1} f_{2}(x)=1$ and $\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} f_{1}(z(x)) \cdot \lim _{x \rightarrow \infty} f_{2}(x)=$ $\frac{1}{\log (1+\sqrt{2})} \cdot \frac{e}{2}=c$ we get the optimality of the constants from (8).

We note that the proof of (8) given in [3] is complicated, and based on subsequent derivatives of functions.

References

[1] Alzer, H. (1988), Aufgabe 987, Elemente der Mathematik, 43, 93.
[2] Bullen, P. S. (2003), Handbook of means and their inequalities, Kluwer Acad. Publ.
[3] Chu, Y.-M. \& Long, B.-Y. (2013), Bounds of the Neuman-Sándor mean using power and identric means, Abstr. Appl. Anal., 2013, ID 832591, 6 pages.
[4] Neuman, E. \& Sándor, J. (2003) On the Schwab-Bachardt mean, Mathematica Pannonica, 14(2), 253-266.
[5] Neuman, E. \& Sándor, J. (2006) On the Schwab-Bachardt mean II, Mathematica Pannonica, 17(1), 49-59.
[6] Neuman, E. \& Sándor, J. (2009) Companion inequalities for certain bivariate means, Applicable Analysis Discr. Math., 3, 46-51.
[7] Sándor, J. (1990) On the identric and logarithmic means, Aequationes Mathematicae, 40(1), 261-270.
[8] Sándor, J. (1995) On certain inequalities for means, J. Math. Anal. Appl., 189, 602-606.
[9] Sándor, J. (2001) On certain inequalities for means, III, Archiv der Mathematik, 76(1), 3440.
[10] Yang, Z.-H. (2012) Sharp power mean bounds for Neuman-Sándor mean, http:// arxiv.org/abs/1208.0895.
[11] Yang, Z.-H. (2013) Estimates for Neuman-Sándor mean by power means and their relative errors, J. Math. Ineq., 7(4), 711-726.

