The primitive solutions to the Diophantine equation
2X4 + Y4 =Z3

Gustav Söderlund
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 23, 2017, Number 2, Pages 36–44
Full paper (PDF, 181 Kb)

Details

Authors and affiliations

Gustav Söderlund
Kettilsgatan 4A 582 21 Linköping, Sweden

Abstract

We find all primitive non-zero integer solutions to the title equation, namely (x, y, z) =(±5,±3, 11). The proofs involved are based solely on elementary methods with no use of computers and the elliptic curve machinery.

Keywords

  • Diophantine equations
  • Primitive non-zero solutions

AMS Classification

  • 11D41

References

  1. Terai, N. & Osada, H. (1992) The Diophantine equation x4 +dy4 = zp, C.R. Math. Rep. Acad. Sci. Canada, 14(1), 55–58.
  2. Cao, Z. F. (1992) The Diophantine equation cx4 +dy4 = zp C.R. Math. Rep. Acad. Sci.
    Canada, 14(5), 231–234.
  3. Darmon, H. & Granville, A. (1995) On the equation zm = F(x, y) and A xp + B yq = C zr, Bull. London Math. Soc., 27(6), 513–543.
  4. Bennett, M. A., Ellenberg, J., S., & Ng, N. (2010) The Diophantine equation A 4 + 2 β B 2 = C p , Inter. J. Number Theory, 6, 1–27.
  5. Dieulefait, L., & Urroz, J. J. (2009) Solving Fermat-type equations via modular Q-curves over polyquadratic fields, J. Crelle, 633, 183–195.
  6. Bruin, N. (1999) The Diophantine equation x2 ± y4 = ± z6 and x2 + y8 = z3 , Compositio Math., 118, 305–321.
  7. Bruin, N. (2005) The primitive solutions to x3 + y9 = z2, J. Numb. Theor., 111, 179–189.
  8. Poonen, B., Schaefer, E., & Stoll, M. (2007) Twists of X(7) and primitive solutions to x2 + y7 = z3, Duke Math. J., 137(1), 103–158.
  9. Söderlund, G., & Aldén, E. (2013) A note on the diophantine equation C z2 = x5 + y5, Advances in Theoretical and Applied Mathematics, 8(3), 173–176.
  10. Mauldin, R., D. (1997) A generalization of Fermat’s last theorem: the Beale conjecture and prize problem, Notices Amer. Math. Soc., 44(11), 1436–1437.
  11. Goldfeld, D. (2002) Modular forms, elliptic curves and the abc conjecture, in: A panorama of number theory or the view from Baker’s garden, Wüstholz, G., (ed.), 173–189.
  12. Lucas, E. (1877) Sur la résolution du système des équations 2v2u2 = w2 et 2v2 + u2 = 3 z2 en nombre entiers, Nouvelles annales de mathématiques 2e série, tome 16, 409–416. http://www.numdam.org/numdam-bin/browse?j=NAM\&sl=0
  13. Sally, J., D., & Sally, P., J. (2007) Roots to Research: A vertical Development of Mathematical problems, American Mathematical Society.
  14. Cohen, H. (2007) Number Theory Volume I: Tools and Diophantine equations, Springer, New York.

Related papers

Cite this paper

Söderlund, G. (2017). The primitive solutions to the Diophantine equation 2X4 + Y4 =Z3. Notes on Number Theory and Discrete Mathematics, 23(2), 36-44.

Comments are closed.