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Abstract: We find all primitive non-zero integer solutions to the title equation, namely (x, y, z) =

(±5,±3, 11). The proofs involved are based solely on elementary methods with no use of com-
puters and the elliptic curve machinery.
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1 Introduction

Terai and Osada and Cao published two papers in the early 1990s concerning the similar equations
x4 + dy4 = zp and cx4 + dy4 = zp, where p is an odd prime. They showed that these equations
have no integer solutions if certain conditions are fulfilled [1, 2]. According to a theorem of
Darmon and Granville, the equation Axp+Byq = Czr has only a finite number of primitive non-
zero solutions (i.e., Ax,By and Cz are pairwise relatively prime and x ·y ·z 6= 0) if 1

p
+ 1

q
+ 1

r
< 1

for A,B,C fixed non-zero integers and p, q, r fixed integers > 1 [3]. Applying this we conclude
that the title equation has a finite number of primitive non-zero solutions. The similar equation
2x2 + y4 = zn has been examined for all n = 4. Combined works using elliptic curves for
different exponents (n) and the method of Galois representations and modularity have shown that
the only primitive positive non-zero solution to this equation is (x, y, z, n) = (11, 1, 3, 5) [4, 5].
Many equations with 1

p
+ 1

q
+ 1

r
< 1 and A,B,C fixed non-zero integers have been completely

solved [6, 7, 8], in appropriate cases simply and solely with elementary methods [9]. For the
special case when A = B = C = 1, i.e., xp + yq = zr there is a conjecture stating that there
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are no primitive non-zero solutions when min (p, q, r) = 3 [7,10]. However, should the abc-
conjecture become a theorem there exist only a finite number of primitive non-zero solutions to
the equation Axp + Byq = Czr for A,B,C fixed nonzero integers and all positive p, q, r such
that 1

p
+ 1

q
+ 1

r
< 1 [11] where solutions arising from the identity 1p + 23 = 32 are excluded.

In this work, we determine all primitive non-zero solutions to the title equation using only
elementary methods and at one crucial step with the aid of an old theorem of Lucas [12].

Lemma 1. The Diophantine equation 24z4 = x4 − y4 has no non-zero solution.

Proof. With no loss of generality we may assume that (24z, x, y) = 1. Hence 24z, x and y are
pairwise relatively prime and after congruence considerations we realize that x and y are odd and
z is even. Substitute x = p + q and y = p − q where p 6≡ q mod 2. (p, q) = 1 since (x, y) = 1.
Hence, 24z4 = 23 · (p2 + q2) · p · q =⇒ 3z4 = (p2 + q2) · p · q. Since (p, q) = 1 we see that
3 - (p2 + q2). Hence 3 | p or 3 | q. If 3 | p, we have p = 3v. Hence z4 = (p2 + q2) · v · q.
However p2 + q2, v and q are pairwise relatively prime and we have p2 + q2 = A4 and q = B4.
Hence p2 + (B4)2 = A4 =⇒ p2 = A4 − (B2)4 and this well-known equation has no non-zero
solutions and a proof of this fact can be found in e.g. [13]. If 3 | q, we will have a contradiction
in the same way.

Theorem 1. The only primitive non-zero solutions to the equation 2x4 + y4 = z3 are (x, y, z) =

(±5,±3, 11).

Proof. From prerequisites we see that 2x, y and z are pairwise relatively prime and x · y · z 6= 0.
Thus, after congruence considerations we realize that y and z must be odd. We get,

(y2 + x2
√
−2) · (y2 − x2

√
−2) = z3 where y2 + x2

√
−2 and y2 − x2

√
−2 are coprime in

Q(
√
−2). Since Q(

√
−2) has unique factorisation and all units (±1) are cubes we have,

y2 + x2
√
−2 = (a+ b

√
−2)3. Hence,

y2 = a(a2− 6b2) and x2 = b(3a2− 2b2). Since y is odd we see that a must be odd. (a, b) = 1

since (x, y) = 1.
Case I. 3 - a and 3 - b
Hence (a, a2 − 6b2) = 1 and (b, 3a2 − 2b2) = 1. From y2 = a(a2 − 6b2) it follows that

a = ±U2
1 (1)

and
a2 − 6b2 = ±U2

2 (2)

where U1 and U2 are odd. (a, U2) = 1. The negative sign in (1) and (2) must be rejected after
reduction modulo 3 of equation (2). From (1) and (2) we get 6b2 = U4

1 − U2
2 . Hence we must

after congruence considerations conclude that b must be even. On the other hand we see from
x2 = b(3a2 − 2b2) that

b = ±V 2 (3)

and
3a2 − 2b2 = ±U2

3 . (4)
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Since (b, U3) = 1 we must after reduction modulo 3 of equation (4) reject the negative sign
in (3) and (4). Thus from equation (4) we have 2b2 = 3a2 − U2

3 and since a and U3 are odd we
realize after congruence considerations that b must be odd. Hence we have a contradiction and
Case I must be impossible.

Case II. 3 - a and 3 | b
Hence b = 3v. Since (a, a2−6b2) = 1 it follows from y2 = a(a2−6b2) that a = ±U2

1 (1) and
a2 − 6b2 = ±U2

3 (2). U1 and U3 are odd and (a, U3) = 1. The negative sign is rejected in (1) and
(2) after reduction modulo 3 of equation (2). From (1) and (2) we have U4

1 − 6b2 = U2
3 (3). With

b = 3v (4) we see from x2 = b(3a2 − 2b2) that 3v(3a2 − 2 · 9v2) = x2 =⇒ 9v(a2 − 6v2) = x2.
Since (9v, a2 − 6v2) = 1 we get

v = ±V 2 (5)

and
a2 − 6v2 = ±U2

2 (6)

where U2 is odd. Since (a, U2) = 1 we must reject the negative sign in (5) and (6) after reduction
modulo 3 of equation (6). From (3), (4) and (5) we have

U4
1 − 54V 4 = U2

3 (7)

and from (1), (5) and (6) we have
U4
1 − 6V 4 = U2

2 . (8)

From (7) and (8) we see that V must be even. Furthermore (8)− (7) =⇒

48V 4 = U2
2 − U2

3 . (9)

From (8) we get
9U4

1 − 54V 4 = 9U2
2 . (10)

(10)− (7) =⇒
8U4

1 = 9U2
2 − U2

3 . (11)

From (9) we have,
48V 4 = (U2 + U3) · (U2 − U3).

Let V 4 = 24k · U4 where U is odd and k = 1. Hence,

48V 4 = 3 · 24k+4 · U4 = (U2 + U3) · (U2 − U3),

where U2+U3 and U2−U3 can be expressed as±2p and±2q, respectively. Moreover p 6≡ q mod 2

and (p, q) = 1 since (U2, U3) = 1. Thus we have the following possibilities since 3 | p or 3 | q,
i1.) U2 + U3 = ±2A4 and U2 − U3 = ±3 · 24k+3 ·B4. Hence
U2 = ±(A4 + 3 · 24k+2 ·B4), U3 = ±(A4 − 3 · 24k+2 ·B4) and 3 - A.
i2.) U2 + U3 = ±3 · 2A4 and U2 − U3 = ±24k+3 ·B4. Hence
U2 = ±(3A4 + 24k+2 ·B4), U3 = ±(3A4 − 24k+2 ·B4) and 3 - B.
i3.) U2 + U3 = ±24k+3 · A4 and U2 − U3 = ±3 · 2B4. Hence
U2 = ±(24k+2 · A4 + 3B4), U3 = ±(24k+2 · A4 − 3B4) and 3 - A.
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i4.) U2 + U3 = ±3 · 24k+3 · A4 and U2 − U3 = ±2B4. Hence
U2 = ±(3 · 24k+2 · A4 +B4), U3 = ±(3 · 24k+2 · A4 −B4) and 3 - B.
U = A ·B where (A,B) = 1 since (U2, U3) = 1.
From equation (11) we have 8U4

1 = (3U2 + U3) · (3U2 − U3). According to the previous
discussion, we have the following alternatives,

ii1.) 3U2 + U3 = ±4C4 and 3U2 − U3 = ±2D4. Hence
U2 = ±(2C

4+D4

3
) and U3 = ±(2C4 −D4)

ii2.) 3U2 + U3 = ±2C4 and 3U2 − U3 = ±4D4. Hence
U2 = ±(C

4+2D4

3
) and U3 = ±(C4 − 2D4).

U1 = C ·D where (C,D) = 1 and 3 - C ·D since (3U2, U3) = 1.
N.B. Concerning the expressions of U2 and U3 in i1.)–i4.) and ii1.)–ii2.) we have U2 =

±(.....) and U3 = ±(.....). This certainly means that U2 = +(.....) and U3 = +(.....) or U2 =

−(.....) and U3 = −(.....). If solutions exist at least one parametric solution of U2 and U3 in
i1.)–i4.) must be equal to at least one parametric solution of U2 and U3 in ii.1)–ii.2) for some
value (values) of A,B,C and D. Thus, we have the following possibilities,

i1.) = ii1.):

U2 = ±(A4 + 3 · 24k+2 ·B4) = ±(2C
4 +D4

3
). (12)

Since A4, B4, C4 and D4 are positive the signs in (12) are not independent and we have,

3A4 + 9 · 24k+2 ·B4 = 2C4 +D4. (13)

U3 = ±(A4 − 3 · 24k+2 ·B4) = ±
(
2C4 −D4

)
(14)

and since the signs in (12) are not independent so are the signs in (14) and we get

A4 − 3 · 24k+2 ·B4 = 2C4 −D4. (15)

Equation (13) - (15) =⇒

2A4 + 12 · 24k+2 ·B4 = 2D4 =⇒ 24(2k ·B)4 = D4 − A4. (16)

However according to Lemma 1 equation (16) has no non-zero solutions and possible zero solu-
tions violate the condition x · y · z 6= 0 in the title equation.

i1.) = ii2.):

U2 = ±(A4 + 3 · 24k+2 ·B4) = ±
(
C4 + 2D4

3

)
(17)

and
U3 = ±(A4 − 3 · 24k+2 ·B4) = ±

(
C4 − 2D4

)
. (18)

In analogy with previous discussion in i1.) = ii1.) we see that the signs in (17) and (18)
are not independent. Hence from equation (18) we have A4 − 3 · 24k+2 · B4 = C4 − 2D4 so
2D4− 3 · 24k+2 ·B4 = C4−A4. Since A,B,C and D are all odd we have 2D4− 3 · 24k+2 ·B4 ≡
0 mod 16 and this is impossible.
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i2.) = ii1.): U2 = ±(3A4+24k+2 ·B4) = ±
(

2C4+D4

3

)
and since the signs are not independent

we have 9A4 + 3 · 24k+2 · B4 = 2C4 + D4. Hence (3A2)2 − D4 = 2C4 − 3 · 24k+2 · B4 =⇒
2C4 − 3 · 24k+2 ·B4 ≡ 0 mod 8 and this is absurd.

i2.) = ii2.): U2 = ±(3A4+24k+2 ·B4) = ±(C4+2D4

3
) and since the signs are not independent

we have (3A2)2 − C4 = 2D4 − 3 · 24k+2 · B4. According to i2.) = ii1.) this is impossible after
congruence considerations.

i3.) = ii1.): U2 = ±(24k+2 ·A4 +3B4) = ±(2C4+D4

3
) and since the signs are not independent

we have
(3B2)2 −D4 = 2C4 − 3 · 24k+2 · A4

and again according to i2.) = ii1.) this is impossible after congruence considerations.
i3.) = ii2.): U2 = ±(24k+2 ·A4 +3B4) = ±(C4+2D4

3
) and since the signs are not independent

we have (3B2)2 −C4 = 2D4 − 3 · 24k+2 ·A4 and according to i2.) = ii1.) this is impossible after
congruence considerations.

i4.) = ii1.):

U2 = ±(3 · 24k+2 · A4 +B4) = ±(2C
4 +D4

3
) (19)

and
U3 = ±(3 · 24k+2 · A4 −B4) = ±(2C4 −D4). (20)

In analogy with the discussion performed in i1.) = ii.1) we see that the signs in (19) and (20)
are not independent. Hence from equation (20) we have 3·24k+2 ·A4−B4 = 2C4−D4 =⇒ 2C4−
3 · 24k+2 · A4 = D4 − B4 and according to i1.) = ii2.) this is impossible after congruence
considerations.

i4.) = ii2.):

U2 = ±(3 · 24k+2 · A4 +B4) = ±(C
4 + 2D4

3
) (21)

and
U3 = ±(3 · 24k+2 · A4 −B4) = ±(C4 − 2D4). (22)

In analogy with the discussion performed in i1.) = ii1.) we see that the signs in (21) and (22) are
not independent.

Hence equation (21) + (22) =⇒

24 · (2k · A)4 = C4 −B4

which according to Lemma 1 has no non-zero solutions and again possible zero solutions violate
the condition x · y · z 6= 0 in the title equation.

Thus we have shown that case II is impossible.
Case III. 3 | a and 3 - b
Hence a = 3t. From y2 = a(a2 − 6b2) we have y2 = 9t(3t2 − 2b2) and since the factors on

the RHS are coprime we see that
t = ±U2

1 (23)

and
3t2 − 2b2 = ±U2

3 (24)
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where U1 and U3 are odd since y is odd. Since (b, U3) = 1 we reject the negative sign in (23) and
(24) after reduction modulo 3 of equation (24). Hence

2b2 = 3U4
1 − U2

3 (25)

and we realize after congruence considerations that b must be odd. From x2 = b(3a2 − 2b2) it
then follows since (b, 3a2 − 2b2) = 1 that

b = ±U2
4 (26)

and
3a2 − 2b2 = ±U2

2 . (27)

Since (b, U2) = 1 the negative sign in (26) and (27) is rejected after reduction modulo 3 of
equation (27). From (23), (25), (26), (27) and since a = 3t we have

3U4
1 − 2U4

4 = U2
3 (28)

and 3 · (3U2
1 )

2 − 2U4
4 = U2

2 =⇒
27U4

1 − 2U4
4 = U2

2 . (29)

(29)− (28) =⇒
24U4

1 = U2
2 − U2

3 . (30)

From (28) we have
27U4

1 − 18U4
4 = 9U2

3 . (31)

(29)− (31) =⇒
16U4

4 = U2
2 − 9U2

3 (32)

From equation (30) we have,
24U4

1 = (U2 + U3) · (U2 − U3). Thus according to case II since (U2, U3) = 1 we have the
following possibilities,

i1.) U2 + U3 = ±4A4 and U2 − U3 = ±3 · 2B4. Hence
U2 = ±(2A4 + 3B4), U3 = ±(2A4 − 3B4) and 3 - A.
i2.) U2 + U3 = ±3 · 4A4 and U2 − U3 = ±2B4. Hence
U2 = ±(6A4 +B4), U3 = ±(6A4 −B4) and 3 - B.
i3.) U2 + U3 = ±2A4 and U2 − U3 = ±3 · 4B4. Hence
U2 = ±(A4 + 6B4), U3 = ±(A4 − 6B4) and 3 - A.
i4.) U2 + U3 = ±3 · 2A4 and U2 − U3 = ±4B4. Hence
U2 = ±(3A4 + 2B4), U3 = ±(3A4 − 2B4) and 3 - B.
U1 = A ·B where (A,B) = 1 since (U2, U3) = 1.
From equation (32) we have 16U4

4 = (U2 +3U3) · (U2− 3U3).Hence according to case II we
have the following alternatives,

ii1.) U2 + 3U3 = ±8C4 and U2 − 3U3 = ±2D4. Hence
U2 = ±(4C4 +D4) and U3 = ±(4C

4−D4

3
).

ii2.) U2 + 3U3 = ±2C4 and U2 − 3U3 = ±8D4. Hence
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U2 = ±(C4 + 4D4) and U3 = ±(C
4−4D4

3
).

U4 = C ·D where (C,D) = 1 and 3 - C ·D since (U2, 3U3) = 1.
N.B. Concerning the expressions of U2 and U3 in i1.) - i.4) and ii1.) - ii2.) we have U2 =

±(.....) and U3 = ±(.....). This certainly means that U2 = +(.....) and U3 = +(.....) or U2 =

−(.....) and U3 = −(.....). As in case II we notice that if solutions exist at least one parametric
solution of U2 and U3 in i1.) - i4.) must be equal to at least one parametric solution of U2 and U3

in ii1.) - ii2.) for some value (values) of A,B,C and D. Thus we have the following cases,
i1.) = ii1.):

U2 = ±(2A4 + 3B4) = ±(4C4 +D4). (33)

Since A4, B4, C4 and D4 are positive the signs in (33) are not independent.

U3 = ±(2A4 − 3B4) = ±(4C
4 −D4

3
) (34)

and since the signs in (33) are not independent so are the signs in (34) and we get 6A4 − 9B4 =

4C4 −D4 =⇒ 6A4 − 4C4 = (3B2)2 −D4. So 6A4 − 4C4 ≡ 0 mod 8 and this is impossible.
i1.) = ii2.):

U2 = ±(2A4 + 3B4) = ±(C4 + 4D4). (35)

Since A4, B4, C4 and D4 are positive the signs in (35) are not independent and we have

2A4 + 3B4 = C4 + 4D4. (36)

U3 = ±(2A4 − 3B4) = ±(C
4 − 4D4

3
). (37)

and since the signs in (35) are not independent so are the signs in (37) and we get

6A4 − 9B4 = C4 − 4D4. (38)

(36) + (38) =⇒
8A4 − 6B4 = 2C4 =⇒ 4A4 − 3B4 = C4 (39)

and since (A,B) = 1 we see that A,B and C are pairwise relatively prime. Hence according to an
old theorem of E. Lucas [12] the only non-zero solutions to equation (39) are A = ±1, B = ±1
and C = ±1 and if these values are inserted in (36) or (38) we have D = ±1. Hence U2 = 5 and
U3 = −1 or U2 = −5 and U3 = 1. Moreover from equation (32) we have U4

4 = 1 =⇒ U4 = ±1.
From equation (26) we get, after excluding the negative sign, b = (±1)2 = 1. Furthermore from
equation (30) we see that U1 = ±1 and from equation (23) we have after excluding the negative
sign t = (±1)2 = 1. With a = 3t we get a = 3. Finally if these values of a and b are inserted in
the expressions of x2 and y2 previously we have x2 = 25 =⇒ x = ±5 and y2 = 9 =⇒ y = ±3
and since z = a2 + 2b2 we see that z = 11.

i2.) = ii1.): U2 = ±(6A4 + B4) = ±(4C4 +D4). Since A4, B4, C4 and D4 are positive we
have 6A4 +B4 = 4C4 +D4. Hence D4−B4 = 6A4− 4C4 and since A,B,C and D are all odd
we have 6A4 − 4C4 ≡ 0 mod 16 and this is impossible.

i2.) = ii2.): U2 = ±(6A4 + B4) = ±(C4 + 4D4) which according to i2.) = ii1.) must be
impossible after congruence considerations.
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i3.) = ii1.): U2 = ±(A4 + 6B4) = ±(4C4 + D4) which according to i2.) = ii1.) must be
impossible after congruence considerations.

i3.) = ii2.): U2 = ±(A4 + 6B4) = ±(C4 + 4D4) which according to i2.) = ii1.) must be
impossible after congruence considerations.

i4.) = ii1.):
U2 = ±(3A4 + 2B4) = ±(4C4 +D4). (40)

Since A4, B4, C4 and D4 are positive the signs in equation (40) are not independent and we have

3A4 + 2B4 = 4C4 +D4. (41)

U3 = ±(3A4 − 2B4) = ±(4C
4 −D4

3
). (42)

and since the signs in (40) are not independent so are the signs in (42) and we get

9A4 − 6B4 = 4C4 −D4. (43)

Equation (41)− (43) =⇒ 4B4 − 3A4 = D4 and in compliance with the discussion performed in
i1.) = ii2.) this will ultimately lead to the only non-zero solutions A = ±1, B = ±1, C = ±1
and D = ±1. Hence U2 = 5 and U3 = 1 or U2 = −5 and U3 = −1. Thus according to i1.) =

ii2.) we have again (x, y, z) = (±5,±3, 11).
i.4) = ii.2):

U2 = ±(3A4 + 2B4) = ±(C4 + 4D4). (44)

Since A4, B4, C4 and D4 are positive the signs in (22) are not independent.

U3 = ±(3A4 − 2B4) = ±(C
4 − 4D4

3
). (45)

and since the signs in (44) are not independent so are the signs in (45). Hence (3A2)2 − C4 =

6B4 − 4D4 and according to i1.) = ii1.) this is impossible.
Thus there are only primitive non-zero solutions to the title equation in case III when i1.)

= ii2.) and i4.) = ii1.) with A = ±1, B = ±1, C = ±1 and D = ±1 and this corresponds
to the only primitive non-zero solutions to the title equation 2x4 + y4 = z3 namely (x, y, z) =

(±5,±3, 11).

We can now summarize the results in this work together with extensive results by others in
the following theorem.

Theorem 2. The only primitive non-zero solutions to the Diophantine equation 2x4 + y4 = zn

for all n = 2 are (x, y, z, n) = (±5,±3, 11, 3).

Proof. The proof of no non-zero solutions if n = 2 can be found in e.g. [14]. If n > 3, we
conclude from [4,5] that the only primitive positive non-zero solutions to the equation 2x2+y4 =

zn for all n > 3 is (x, y, z, n) = (11, 1, 3, 5) so the equation 2(x2)2 + y4 = zn has no non-zero
solutions if n > 3 since 11 is not a square.
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