Marco Ripà

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 22, 2016, Number 2, Pages 36—43

**Download full paper: PDF, 557 Kb**

## Details

### Authors and affiliations

Marco Ripà

*Economics − Institutions and Finance
Roma Tre University, Rome, Italy
*

### Abstract

We provide an optimal strategy to solve the *n* × *n* × *n* points problem inside the box, considering only 90° turns, and at the same time a pattern able to drastically lower down the known upper bound. We use a very simple spiral frame, especially if compared to the previous plane by plane approach that significantly reduces the number of straight lines connected at their end-points necessary to join all the *n*^{3} dots. In the end, we combine the square spiral frame with the rectangular spiral pattern in the most profitable way, in order to minimize the difference *h _{u}*(

*n*) −

*h*(

_{l}*n*) between the upper and the lower bound, proving that it is ≤ 0.5 ∙

*n*∙ (

*n*+ 3), for any

*n*> 1.

### Keywords

- Topology
- Inside the box
- Nine dots
- Straight line
- Outside the box
- Upper bound
- Graph theory
- Three-dimensional
- Segment
- Point

### AMS Classification

- Primary: 91A44
- Secondary: 37F20, 91A46

### References

- Kihn, M. (1995)
*Outside the Box: the Inside Story*. FastCompany. - Loyd, S. (1914)
*Cyclopedia of Puzzles.*The Lamb Publishing Company, p. 301. - Lung, C. T., & Dominowski, R. L. (1985) Effects of strategy instructions and practice on nine-dot problem solving.
*Journal of Experimental Psychology: Learning, Memory, and Cognition*, 11(4), 804–811. - Ripà, M., & Remirez, P. (2013)
*The Nine Dots Puzzle Extended to n×n×…×n Points*, viXra, 5 Sept. 2013, http://vixra.org/pdf/1307.0021v4.pdf - Ripà, M. (2014) The Rectangular Spiral or the
*n*_{1}×*n*_{2}× … ×*n*Points Problem._{k}*Notes on Number Theory and Discrete Mathematics*, 20(1), 59–71. - Scheerer, M. (1963) Problem-solving.
*Scientific American*, 208(4), 118–128. - Sloane, N. J. A. (2013)
*The Online Encyclopedia of Integer Sequences*, Inc. 2 May. 2013. Web. 11 Dec. 2013, http://oeis.org/A225227 - Sloane, N. J. A. (2009)
*The Online Encyclopedia of Integer Sequences*, Inc. 17 Feb. 2009. Web. 13 Jun. 2015, http://oeis.org/A156859 - Sloane, N. J. A. (1999)
*The Online Encyclopedia of Integer Sequences*, Inc. 7 May. 1999. Web. 6 Aug. 2015, http://oeis.org/A047838 - Sloane, N. J. A. (1991)
*The Online Encyclopedia of Integer Sequences*, Inc. 30 Apr. 1991. Web. 12 Aug. 2015, http://oeis.org/A000096 - Spaans, T. (2012)
*Lines through 5×5 dots*, Justpuzzles, 7 Dec. 2012, http:// justpuzzles.wordpress.com/about/hints/solutions-to-puzzles/#224 - Weisstein, E. W.,
*Prime Spiral*, From MathWorld: A Wolfram Web Resource, http://mathworld.wolfram.com/PrimeSpiral.html

## Related papers

- Ripà, Marco. “The Rectangular Spiral or the
*n*_{1}×*n*_{2}× … ×*n*Points Problem.” Notes on Number Theory and Discrete Mathematics 20, no. 1 (2014): 59-71._{k}

## Cite this paper

APARipà, M. (2016). The *n* × *n* × *n* Points Problem optimal solution. Notes on Number Theory and Discrete Mathematics, 22(2), 36-43.

Ripà, Marco. “The *n* × *n* × *n* Points Problem Optimal Solution.” Notes on Number Theory and Discrete Mathematics 22, no. 2 (2016): 36-43.

Ripà, Marco. “The *n* × *n* × *n* Points Problem Optimal Solution.” Notes on Number Theory and Discrete Mathematics 22.2 (2016): 36-43. Print.