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Abstract: We provide an optimal strategy to solve the n × n × n points problem inside the box, 
considering only 90° turns, and at the same time a pattern able to drastically lower down the 
known upper bound. We use a very simple spiral frame, especially if compared to the previous 
plane by plane approach that significantly reduces the number of straight lines connected at their 
end-points necessary to join all the n3 dots. In the end, we combine the square spiral frame with 
the rectangular spiral pattern in the most profitable way, in order to minimize the difference  
hu(n) − hl(n) between the upper and the lower bound, proving that it is ≤ 0.5 ∙ n ∙ (n + 3), for any 
n > 1. 
Keywords: Topology, Inside the box, Nine dots, Straight line, Outside the box, Upper bound, 
Graph theory, Three-dimensional, Segment, Point. 
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1 Introduction 
As stated by the classic nine dots problem appeared in Samuel Loyd’s Cyclopedia of Puzzles 
(Figure 1) [2], we have to “(…) draw a continuous line through the center of all the eggs so as 
to mark them off in the fewest number of strokes” [1–3]. However, this time we are considering 
n3 points located in a three-dimensional space. 

Thus, we will show how it is possible to join n × n × n points arranged in n equidistant 

grids, formed by n rows and n columns each, using at most 
2 3

2
n n+ ⋅  straight lines connected at 

their end-points, for any n ∈ ℕ. 
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Figure 1. The original problem from Loyd’s Cyclopedia of Puzzles, New York, p. 301. 

2 The n × n × n problem bounds 
The original nine dots puzzle can be naturally extended to an arbitrarily large number of distinct 
(zero-dimensional) points for each row / column [6]. This new problem asks to connect n × n 
points, arranged in a grid formed by ݊ rows and ݊ columns, using the fewest straight lines 
connected at their end-points. Ripà and Remirez [4] showed that it is possible to do this for every 
n ∈ ℕ – {0, 1, 2}, using only 2 ∙ ݊ − 2 straight lines. For any n ≥ 5, we can combine a given 8 
line solution for the 5 × 5 problem [11] and the square spiral frame [12].  

In [5], Ripà further extended the n × n result to a three-dimensional space [7] providing non-
trivial bounds for this problem. 

For n > 3, Ripà proved the lower bound [8]   ℎ௟(݊) = ݊ଶ  ቒଷ∙௡మିସ∙௡ାଶଶ∙(௡ିଵ) ቓ   (1) 
and the upper bound 

ℎ௨(݊) =
ەۖۖ
۔ۖ
ۓۖ

 
ଶଷ ∙ ݅௠௔௫ଷ + 5 ∙ ݅௠௔௫ଶ − 2 ∙ ቀ݊ − ଵସଷ ቁ ∙ ݅௠௔௫ + 2 ∙ ݊ଶ − 2 ∙ ݊ + ݊   ࢌ࢏3 − ݅௠௔௫ଶ − 5 ∙ ݅௠௔௫ ≤ 5
ଶଷ ∙ ݅௠௔௫ଷ + 6 ∙ ݅௠௔௫ଶ − ቀ2 ∙ ݊ − ସଷଷ ቁ ∙ ݅௠௔௫ + 2 ∙ ݊ଶ − 3 ∙ ݊ + ݊   ࢌ࢏8 − ݅௠௔௫ଶ − 5 ∙ ݅௠௔௫ > 5

 (2) 

where ݅௠௔௫ is the maximum value iℕ0 such that  
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݊ ≥ ݅ଶ + 5 ∙ ݅ + 4 ⤇ ݅௠௔௫ = ቔଵଶ ∙ ൫√4 ∙ ݊ + 9 − 5൯ቕ. 
Now, we will combine the square spiral pattern with the rectangular spiral one in order to 

drastically lower down the (2) following the good average approach: we have to put our effort 
on keeping high the average number of dots joined with two or more consecutive lines rather 
than focusing ourselves on a single one. 

The method we are introducing lets us improve the (2) for any ݊ and the best known upper 
bound for n > 5. On specifics, if n = 5, we match the best outcome of the [5]. 

This time it is not so important from which plane we start, anyway we know from the 
pigeon problem how to maximize the total number of dots connected skipping form a given 
plane to another. In fact, the pigeon problem asks: “Which is the maximal value of the sum of 
the lengths of n – 1 line segments (connected at their end-points) required to pass through ݊ trail 
dots, with unit distance between adjacent points, visiting all of them without overlap two or more 
segments?”, and its solution is given by the sequence of the OEIS [9]. 

Thus, let we start applying the square spiral frame to a central n × n grid, then we move to 
an external one, then we go through  ௡ଶ  dots (if n is even) or (௡ିଵ)ଶ + 1 (if n is an odd number) 
and so on. We draw lines for each frame and then we move to another grid, leaving 6 central 
dots for the ending, when we will use the rectangular spiral pattern. In this way we will be able 
to solve the puzzle without exiting from the box, the minimal cube that contains all the dots, not 
even once. 

For every n ≥ 5, the square spiral frame is as follows (Fiqure 2): 

 

Figure 2. The square spiral frame using lines (grid). 

At the end of this process, we have used lines and we need one more line in order to reach 
the starting position for the rectangular spiral pattern (Figure 3) [5]. 

It is pretty easy to find out that the particular rectangular spiral arrangement we have 
chosen takes a total of additional lines, for a new upper bound of  

 ℎ௨(݊) = 2 ∙ ݊ଶ − 4 ∙ ݊ + 11  (3) 

Hence, by combining the (1) with the (3), for n ∈ ℕ – {0, 1}, we can say that 

 ݊ଶ + ቒଷ∙௡మିସ∙௡ାଶଶ∙(௡ିଵ) ቓ  ≤ ℎ(݊) ≤ 2 ∙ ݊ଶ − 4 ∙ ݊ + 11  (4) 
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Figure 3. The rectangular spiral pattern for n = 5 (in red and light blue). This is the shortest 
path (length = n3 – 1 units), no crossing lines, no points visited twice, hu(5) = 41. 

3 The optimal upper bound 
Looking carefully at the method described in Section 2, it is possible to discover how, as n grows, 
it would not be a good strategy to sacrifice the rectangular spiral waiting the last moves of the 
game. There should be an optimal value to switch from the square spiral frame to the final stage, 
in order to get the best inside the box solution of the n × n × n dots puzzle. 

How many moves it is convenient to perform following the rectangular spiral path depends 
on n, keeping in mind that the best approach is to put the entire focus on maximizing the average 
number of dots connected with a large set of consecutive lines, according to the good average 
strategy that let us easily improve the previous upper bound for any n > 6. 

Given that we are looking for the optimal q ∈ ℕ, the number of connected lines that belong 
to the square spiral frame, such that the (5) assumes the minimum value over the integers, we 
get two different cases depending on whether q is even or odd. 

,ݍ)݂   ݊) =  
ەۖۖ
۔ۖ
ۓۖ

 
ݍ ∙ ݊ + ݊ − 1 + 2 ∙ ቀ݊ − ௤ଶቁଶݍ   ࢌ࢏ = 2 ∙ ݉, ∀݉ ∈ ℕ − ሼ0, 1, 2ሽ

ݍ ∙ ݊ + ݊ − 1 + 2 ∙ ቀ݊ − ௤ାଵଶ ቁ ∙ ቀ݊ − ௤ିଵଶ ቁݍ   ࢌ࢏ = 2 ∙ ݉ − 1, ∀݉ ∈ ℕ − ሼ0, 1, 2ሽ
     (5) 

(݊)௢௣௧ݍ  ≔ ݉݅݊  ሼ ܽ | ∃ ݍ ∈ ℕ − ሼ0, 1, 2, 3, 4ሽ ∶ ܽ = ,ݍ)݂ ݊) ሽ  

Since the (5) implies that qopt(n) = n for any n ≥ 5,  the optimal solution requires n lines for 

each square spiral (Figure 4), n connecting lines and ௡మଶ − 1 or ௡మିଵଶ − 1 lines (respectively 
if n is an even or an odd number) for the rectangular spiral pattern (see Table 1). Therefore, for 
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a generic m ∈ ℕ – {0, 1, 2}, the number of lines necessary to visit all the n3 dots is given by the 
(6)–(7): 

ℎ௨(݊) =
ەۖۖ
۔ۖۖ
ۓ

 
݊ଶ + ݊ + 2 ∙ ቀ݊ − ௡ଶቁ ∙ ቀ݊ − ௡ଶቁ − ݊   ࢌ࢏1 = 2 ∙ ݉

݊ଶ + ݊ + 2 ∙ ቀ݊ − ௡ାଵଶ ቁ ∙ ቀ݊ − ௡ିଵଶ ቁ − ݊   ࢌ࢏ 1 = 2 ∙ ݉ − 1
 =

۔ۖۖەۖۖ
ۓ

 
ଷଶ ∙ ݊ଶ + ݊ − ݊   ࢌ࢏1 = 2 ∙ ݉
ଷଶ ∙ ݊ଶ + ݊ − ଷଶࢌ࢏   ݊ = 2 ∙ ݉ − 1

     (6) 

Hence, 
     ℎ(݊) ≤ ቔଷଶ ∙ ݊ଶቕ + ݊ − 1.       (7) 

  

Figure 4. The optimal square spiral frame, where ݍ = ݊, for a grid. 

n 
Best Upper 

Bound Currently 
Discovered 

n 
Best Upper 

Bound Currently 
Discovered 

n 
Best Upper 

Bound Currently 
Discovered 

1 / 18 503 35 1871 
2 7 19 559 36 1979 
3 14 20 619 37 2089 
4 25 21 681 38 2203 
5 41 22 747 39 2319 
6 59 23 815 40 2439 
7 79 24 887 41 2561 
8 103 25 961 42 2687 
9 129 26 1039 43 2815 
10 159 27 1119 44 2947 
11 191 28 1203 45 3081 
12 227 29 1289 46 3219 
13 265 30 1379 47 3359 
14 307 31 1471 48 3503 
15 351 32 1567 49 3649 
16 399 33 1665 50 3799 
17 449 34 1767 51 3951 

Table 1. n × n × n points puzzle upper bounds [7], following 
the square / rectangular spiral pattern by Figure 3 and Figure 4, for any n ≥ 5. 
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Nota Bene. The upper bounds for n = 3 and n = 4 are outside the box solutions: they are based 
on a combination of two-dimensional patterns as shown in Figure 5. 

 
Figure 5. The outside the box solutions for n = 3 and n = 4 

(and lines respectively). 

4 Conclusion 
The research of the best solution to this problem could be the subject of another paper, following 
the same approach as above and trying to switch from the two main patterns more than once. 

Simultaneously, we can improve the upper limit for the k-dimensions n × n × … × n dots 
problem (k > 3) by simply defining ݐ: = ቔଷଶ ∙ ݊ଶቕ + ݊ − 1. 

Therefore, the current bounds are (Figure 6): ቜ௡ೖାቀೖమିଵቁ∙௡మା(ଷିଶ∙௞)∙௡ାଶ∙௞ିସ௡ିଵ ቝ + 1 ≤ ℎ(݊) ≤ ݐ) + 1) ∙  ݊௞ିଷ − 1   
  ⤇ ቜ௡ೖାೖమ∙(௡ିଶ)మି௡మାଷ∙௡ିସ௡ିଵ ቝ + 1 ≤ ℎ(݊) ≤ ቀቔଷଶ ∙ ݊ଶቕ + ݊ቁ ∙  ݊௞ିଷ − 1    (8) 

With specific regard to the n × n × n dots problem, we have the following difference 
between the current upper bound and the lower one (n ≥ 5): ℎ௨(݊) − ℎ௟(݊) = ඌ32 ∙ ݊ଶඐ + ݊ − 1 − ݊ଶ − ቜ3 ∙ ݊ଶ − 4 ∙ ݊ + 22 ∙ (݊ − 1) ቝ ≤ ቞࢔૛ ∙ ࢔) − ૛)૛ ∙ ࢔) − ૚) ቟ 

Thus, ℎ௨(݊) − ℎ௟(݊) ≤ ૛(ା૜࢔)∙࢔ ,   (9) ℎ௨(݊) − ℎ௟(݊) = ሼØ, 0, 0, 3ሽ, for n = {1, 2, 3, 4} while, for n ≥ 5, the gaps are (at most) equal to 
the a(n) belonging to the sequence of the OEIS [10]. 

For n > 5, the new value of t is pretty much more accurate than the previous one (see [5]). 
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Figure 6. An extension of the puzzle in a four-dimensional space 

(k = 4, n = 3, hl = 41, hu = 42). 

Finally, using the method decribed in this paper, for any n ≥ 5, it is possible to solve the 
puzzle inside the box without crossing two or more lines, with only ቔଷଶ ∙ ݊ଶቕ + ݊ − 1 line 
segments connected at their end-points. In fact, we can apply the square spiral starting from an 
external grid, jumping to the next one after ݊ lines and so on, with n – 1 connection lines of 
unitary length (let the distance between two adjacent points be a unit) for the square spiral frame. 
At this point we will spend the (n2 + n)-th line to join the central dots from the opposit external 
grid (on the other side of the box) in order to finish with the classic “rectangular” pattern based 

on ቀ݊ − ௤ଶቁଶ − 1 more connection lines of unitary length. 
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