József Sándor and Edith Egri

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 21, 2015, Number 4, Pages 40—47

**Download full paper: PDF, 168 Kb**

## Details

### Authors and affiliations

József Sándor

*Babes–Bolyai University, Department of Mathematics,
Cluj-Napoca, Romania
*

Edith Egri

*Babes–Bolyai University, Department of Mathematics,
Cluj-Napoca, Romania
*

### Abstract

We consider certain properties of functions *f* : *J* → *I* (*I*, *J* intervals) such that

*f*(*M*(*x*, *y*)) ≤ *N*(*f*(*x*), *f*(*y*)), where *M* and *N* are general means. Some results are extensions of the case *M = N = L*, where *L* is the logarithmic mean.

### Keywords

- Mean
- Logarithmic mean
- Identric mean
- Integral mean
- Convex or concave functions with respect to a mean
- Subadditive functions
- Continuity

### AMS Classification

- 26A51
- 26D99
- 39B72

### References

- Bullen, P. S. (2003) Handbook of means and their inequalities, Kluwer Acad. Publ.
- Matkowski, J. & J. R¨atz (1997) Convex functions wirh respect to an arbitrary mean, Intern. Ser. Num. Math., 123, 249–258.
- Matkowski, J. & J. R¨atz (1997) Convexity of the power functions wirh respect to symmetric homogeneous means, Intern. Ser. Num. Math., 123, 231–247.
- Matkowski, J. (2003) Affine and convex functions with respect to the logarithmic mean, Colloq. Math., 95, 217–230.
- Roberts, A. W. & D. E. Varberg (1973) Convex functions, Academic Press.
- Sándor, J. (1990) On the identric and logarithmic means, Aequationes Math., 40, 261–270.
- Sándor, J. (1998) Inequalities for generalized convex functions with applications, Babes–Bolyai Univ., Cluj, Romania (in Romanian).
- Sándor, J. & B. A. Bhayo (2015) On some some inequalities for the identric, logarithmic and related means, J. Math. Ineq., 9(3), 889–896.
- Zgraja, T. & Z. Kominek (1999) Convex functions wirh respect to logarithmic mean and sandwich theorem, Acta Univ. Car.–Math. Phys., 40(2), 75–78.
- Zgraja, T. (2005) On continous convex or concave functions wirh respect to the logarithmic mean, Acta Univ. Car.–Math. Phys., 46(1), 3–10.

Related papers

## Cite this paper

APASándor, J., & Egri, E. (2015). On (*M*, *N*)-convex functions. Notes on Number Theory and Discrete Mathematics, 21(4), 40-47.

Sándor, József, and Edith Egri. “On (*M*, *N*)-convex Functions.” Notes on Number Theory and Discrete Mathematics 21, no. 4 (2015): 40-47.

Sándor, József, and Edith Egri. “On (*M*, *N*)-convex Functions.” Notes on Number Theory and Discrete Mathematics 21.4 (2015): 40-47. Print.