Distribution of prime numbers by the modified chi-square function

Daniele Lattanzi
Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132
Volume 21, 2015, Number 1, Pages 18—30
Download full paper: PDF, 246 Kb

Details

Authors and affiliations

Daniele Lattanzi
Former ENEA-FUS, Frascati, Roma, Italy
Private address: Via La Spezia 81 – 00182 Roma, Italy

Abstract

The statistical distribution of prime numbers represents an open problem in number theory still nowadays. The methodology of experimental mathematics has not yet been attempted in this field, thus the present report treats prime numbers as raw experimental data and as elements of larger and larger finite sequences {Pm}. The modified chi-square function Χ2k(A, x/μ) with the ad-hoc A, k and μ = μ(k) parameters is the best-fit function of the differential distribution functions of both prime finite sequences {Pm} and truncated progressions {nα} with α ∈ (1, 2) so that an injective map can be set between them through the parameter k of their common fit function Χ2k(A, x/μ) showing that the property of scale invariance does not hold for prime distribution. The histograms of prime gaps, which are best fitted by standard statistical distribution functions, show unexpected clustering effects.

Keywords

  • Prime distribution
  • Prime sequences
  • Modified chi-square function
  • Progressions

AMS Classification

  • 11N13
  • 11N05
  • 11B25

References

  1. Smith, D. E. (1929, 1959) A Source Book in Mathematics. Dover Publications, Inc. New York, 1959, unabridged republication of the 1st edition, originally published in 1929 byMcGraw-Hill Book Co., Inc.
  2. Du Sautoy, M. (2003, 2004) L’enigma dei numeri primi. 2004 RCS Libri S.p.A. Milano, ISBN 978-8817-05022-7. The Music of the Primes 2003, Marcus du Sautoy.
  3. Derbyshire, J. (2003, 2006) L’ossessione dei numeri primi – Bernhard Riemann e il principale problema irrisolto della matematica. 2006 Bollati Boringhieri Editore s.r.l.Torino. Prime Obsession. Bernhard Riemann and the Greatest Unsolved Problem in Mathematics Joseph Henry Press (National Academic Press), Washington D.C., 2003, John Derbyshire.
  4. Languasco, A., & Zaccagnini, A. (2005) Alcune proprietà dei numeri primi, I e II Sitoweb Bocconi-Pristem, http://matematica.uni-bocconi.it/LangZac/home.htm
  5. Goldstone, D. A., Pintz, J., & Yildirim, C.Y. (2007) The path to recent progress on small gaps between primes, Clay Mathematics Proceedings, 7, 125–135.
  6. Granville, A. (2008) Prime Number Patterns, The American Mathematical Monthly, 115(4), 279–296.
  7. Granville, A., & Martin, G. (2006) Prime Number Races, The American Mathematical Monthly, 113(1), 1–33.
  8. Ball, P. (2003) Prime numbers not so random?, Nature 24 March 2003 doi:10.1038/news030317-13.
  9. Granville, A., Harald Cramér and the Distribution of Prime Numbers, based on a lecture presented on 24th September 1993 at the Cramér Symposium in Stockholm. https://www.dartmouth.edu/~chance/chance_news/for_chance_news/Riemann/cramer.pdf.
  10. Holdom, H. (2009) Scale-invariant correlations and the distribution of prime numbers, J. Phys. A, Math. Theor. 42, Art. ID 345102 (10 pp.).
  11. Jeong, S., Lee, G. & Kim, G. (2013) Statistical and structural analysis of the appearance of prime Numbers, J. Appl. Math. Comp. 41, 283–299.
  12. Bailey, D. H., & Borwein, J.M. (2011) Exploratory Experimentation and Computation. Notices of the AMS, 58(10), 1410–1419. http://escholarsship.org/uc/item/26m6noob
  13. Andeberhan, T., Medina, L.A. & Moll, V.H. (Eds) (2009) Contemporary Mathematics –517 – Gems in Experimental Mathematics. AMS Special Session, Experimenta lMathematics, January 5, 2009, Washington D.C.
  14. E Silva, T. O. Goldbach Conjecture verification, Dep. De Electronica, Telecomuniçaõese Informatica, Universidade de Aveiro, Portugal. http://www.ieeta.pt/~tos/primes.html
  15. Sørensen, H. K. Exploratory experimentation in experimental mathematics: A glimpse at the PSLQ algorithm. Institut for Videnskabsstudier, Aarhus Universitet, 8000 Ärhus C, Denmark.
  16. Borwein, J. M. (2009) Exploratory Experimentation: Digitally-Assisted Discovery and Proof, University of Newcastle, Australia.
  17. Mathews, J. & Walker, R. L. (1964) Caltech Mathematical Methods of Physics. W.A.Benjamin Inc. New York N.Y.
  18. Babusci, D., Dattoli, G., Del Franco, M. (2010) Lectures on Mathematical Methods for Physics RT/2010/58/ENEA, ENEA-Roma-I.
  19. Morice, E. (1967, 1971) Dizionario di statistica. ISEDI. Milano, 1971. Dictionnaire de Statistique Dunod, Paris, 1967.
  20. Young, H. D. (1962) Statistical Treatment of Experimental Data. Carnegie Institute of Technology. McGraw-Hill Book Company, Inc.
  21. Caldwell, C., K., The first fifty million primes. http://primes.utm.edu/lists/small/millions
  22. http://originlab.com/www/helponline/origin/en/UserGuide/Extreme.html
  23. Fubini, A., Alberini, R., & Lattanzi, D. (1973) 203Tl(n, γ) Reaction and Level Structure of 204Tl , Il Nuovo Cimento (S.I.F.) 11(18), 711–725. and references therein.
    http://link.springer.com/article/10.1007%2FBF02727587#
  24. Colao, F., Fantoni, R. & Lattanzi, D. (2005) LIPS analysis of samples of tree trunks ALT04 (Rome and Frascati, Sept. 10–15, 2004) Advanced Laser Technologies 2004, Shcherbakov, I.A., Giardini, A. Vitali Konov, I., & Pustovoy, I.V. (Eds) Proceedings of the S.P.I.E., 5850, 166–173.

Related papers

Cite this paper

APA

Lattanzi, D. (2015). Distribution of prime numbers by the modified chi-square function. Notes on Number Theory and Discrete Mathematics, 21(1), 18-30.

Chicago

Lattanzi, Daniele. “Distribution of Prime Numbers by the Modified Chi-Square Function.” Notes on Number Theory and Discrete Mathematics 21, no. 1 (2015): 18-30.

MLA

Lattanzi, Daniele. “Distribution of Prime Numbers by the Modified Chi-Square Function.” Notes on Number Theory and Discrete Mathematics 21.1 (2015): 18-30. Print.

Comments are closed.