Fernando Córes and Diego Marques
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 20, 2014, Number 5, Pages 35–39
Full paper (PDF, 137 Kb)
Details
Authors and affiliations
Fernando Córes
Department of Mathematics, University of Brasilia
Brasilia, DF, Brazi
Diego Marques
Department of Mathematics, University of Brasilia
Brasilia, DF, Brazi
Abstract
Let Fn and Ln be the n-th Fibonacci and Lucas number, respectively. In this note, we give a combinatorial proof for the following identity
Keywords
- Fibonacci
- Lucas
- Multiple angle
- Combinatorial proof
AMS Classification
- 11B39
References
- Koshy, T., Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.
- Thongmoon, M., New identities for the even and odd Fibonacci and Lucas Numbers, Int. J. Contemp. Math. Sciences, Vol. 4, 2009, 671–676
Related papers
Cite this paper
Córes, F., & Marques, D. (2014). A combinatorial proof of multiple angle formulas involving Fibonacci and Lucas numbers. Notes on Number Theory and Discrete Mathematics, 20(5), 35-39.