A. G. Shannon and J. V. Leyendekkers
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 20, 2014, Number 5, Pages 31–34
Full paper (PDF, 83Kb
Details
Authors and affiliations
A. G. Shannon
Faculty of Engineering & IT, University of Technology
Sydney, NSW 2007, Australia
J. V. Leyendekkers
Faculty of Science, The University of Sydney
NSW 2006, Australia
Abstract
This note extends some of the characteristics of a Zeckendorf triangle composed of Fibonacci number multiples of the Fibonacci sequence.
Keywords
- Fibonacci numbers
- Convolutions
- Recurrence relations
- Kronecker delta
- Zeckendorf representations
- Riordan group
AMS Classification
- 11B39
- 03G10
References
- Cook, C. K., A. G. Shannon. Generalized Fibonacci and Lucas Sequences with Pascal-type Arrays. Notes on Number Theory and Discrete Mathematics . Vol. 12, 2006, No. 4, 1–9.
- Griffiths, M. Digit Proportions in Zeckendorf Representations. The Fibonacci Quarterly . Vol. 48, 2010, No. 2, 168–174.
- Hilton, P., J. Pedersen. Mathematics, Models, and Magz. Part 1: Patterns in Pascal’s Triangle and Tetrahedron. Mathematics Magazine. Vol. 85, 2012, No. 2, 79–109.
- Hoggatt, V. E. Jr. A New Angle on Pascal’s Triangle. The Fibonacci Quarterly. Vol. 6, 1968, No. 4, 221–234.
- Hoggatt, V. E. Jr., M. Bicknell-Johnson. Fibonacci Convolution Sequences. The Fibonacci Quarterly. Vol. 15, 1977, No. 2, 117–122.
- Shannon, A. G. A Note on Some Diagonal, Row and Partial Column Sums of a Zeckendorf Triangle. Notes on Number Theory and Discrete Mathematics. Vol. 16, 2010, No. 2, 33–36.
- Shapiro, L. W., S. Getu, W.-J. Wo an, L. C. Woodson. The Riordan Group. Discrete Applied Mathematics. Vol. 34, 1991, 229–239.
Related papers
Cite this paper
Shannon, A. , & Leyendekkers, J. (2014). Extensions to the Zeckendorf Triangle . Notes on Number Theory and Discrete Mathematics, 20(5), 31-34.