J. V. Leyendekkers and A. G. Shannon
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 20, 2014, Number 3, Pages 45–49
Full paper (PDF, 190 Kb)
Details
Authors and affiliations
J. V. Leyendekkers
Faculty of Science, The University of Sydney
NSW 2006, Australia
A. G. Shannon
Faculty of Engineering & IT, University of Technology
Sydney, NSW 2007, Australia
Abstract
If we use the expression Fp = kp ± 1, p prime, then digital sums of k reveal specific values for primes versus composites in the range 7 ≤ p ≤ 107. The associated digital sums of Fp±1 also yield prime/composite specificity. It is shown too that the first digit of Fp, and hence for the corresponding triples, (Fp, Fp±1) and (Fp, Fp−1, Fp−2) can be significant for primality checks.
Keywords
- Fibonacci numbers
- Primality
- Digit sums
AMS Classification
- 11B39
- 11B50
References
- Erdös, P., E. Jabotinsky. On Sequences of Integers Generated by a Sieving Process. Nedelandse Akademie van Wetenschappen. Series A. 61, 1958, 115–128.
- Leyendekkers, J. V., A. G. Shannon. Fibonacci Numbers within Modular Rings. Notes on Number Theory and Discrete Mathematics. Vol. 4, 1998, No. 4, 165–174.
- Leyendekkers, J. V., A. G. Shannon. The Structure of the Fibonacci Numbers in the Modular Ring Z5. Notes on Number Theory and Discrete Mathematics. Vol. 19, 2013, No. 1, 66–72.
- Leyendekkers, J. V., A. G. Shannon. Fibonacci and Lucas Primes. Notes on Number Theory and Discrete Mathematics. Vol. 19, 2013, No. 2, 49–59.
- Leyendekkers, J. V., A. G. Shannon. The Pascal–Fibonacci Numbers. Notes on Number Theory and Discrete Mathematics. Vol. 19, 2013, No. 3, 5–11.
- Leyendekkers, J. V., A. G. Shannon. Fibonacci Primes. Notes on Number Theory and Discrete Mathematics. Vol. 20, 2014, No. 2, 6–9.
- Watkins, J. J. Number Theory: A Historical Approach. Princeton and Oxford: Princeton University Press, 2014, 271–272.
Related papers
Cite this paper
Leyendekkers, J., & Shannon, A. (2014). Fibonacci numbers with prime subscripts: Digital sums for primes versus composites. Notes on Number Theory and Discrete Mathematics, 20(3), 45-49.