Fibonacci numbers with prime subscripts: Digital sums for primes versus composites

J. V. Leyendekkers¹ and A. G. Shannon²

 ¹ Faculty of Science, The University of Sydney NSW 2006, Australia
² Faculty of Engineering & IT, University of Technology Sydney, NSW 2007, Australia
e-mails: tshannon38@gmail.com, Anthony.Shannon@uts.edu.au

Abstract: If we use the expression $F_p = kp \pm 1$, p prime, then digital sums of k reveal specific values for primes versus composites in the range $7 \le p \le 107$. The associated digital sums of $F_{p\pm 1}$ also yield prime/composite specificity. It is shown too that the first digit of F_p , and hence for the corresponding triples, $(F_p, F_{p\pm 1})$ and (F_p, F_{p-1}, F_{p-2}) can be significant for primality checks.

Keywords: Fibonacci numbers, Primality, Digit sums. **AMS Classification:** 11B39, 11B50.

1 Introduction

The structure of a recursive sequence such as the Fibonacci series is, by definition, very regular [2, 3], so that any fluctuations can be analysed to distinguish between primes and composites when the subscripts or the order in the set are prime numbers [4, 5, 6]. We have recently shown [6] that Fibonacci numbers with prime subscripts have factors of the form $kp \pm 1$ (k even). Here we continue this analysis.

2 $F_p = kp \pm 1$: Digit sums of k

Since $F_p = F_p \times 1$, this function applies generally, as was shown for primitive Fibonacci triples [4] (Table 1). The *k* values have digit sums [6] which, like those for other F_p functions can often distinguish between primes and composites (Table 2). The right-end-digit (RED) for *k*, designated by k^* , has distinct values for a given p^* , irrespective of primality (Table 3).

р	F_p	k	Sign [‡]	Туре
7	13	2	_	р
11	89	8	+	р
13	233	18	_	р
17	1597	94	_	р
19	4181	220	+	С
23	28657	1246	_	р
29	514229	17732	+	р
31	1346269	43428	+	С
37	24157817	652914	_	С
41	165580141	4038540	+	С
43	433494437	10081266	_	р
47	2971215073	63217342	_	р
53	53316291173	100596778	_	С
59	956722026041	1621562750	+	С
61	2504730781961	41061160360	+	р
67	44945570212853	670829406162	_	С
71	308061521170129	4338894664368	+	р
73	806515533049393	11048157986978	_	р
79	14472334024676221	183194101578180	+	С
83	99194853094755497	1195118711985006	_	р
89	1779979416004714189	19999768719154092	+	С
97	83621143489848422977	862073644225241474	_	р
101	573147844013817084101	5674731128849674100	+	р
103	1500520536206896083277	14568160545698020226	_	р
107	10284720757613717413913	96118885585174929102	_	С

Table 1. Digit sums of *k* (*p*: prime; *c*: composite) [‡] ['+' $\equiv p^* \in \{1, 9\}$; '-' $\equiv p^* \in \{3, 7\}$]

p *	Primes	Composites
1	1, 2, 8, 9	3, 6
3	2, 4, 6, 8, 9	7
7	1, 2, 4, 8	6, 9
9	2	3, 4, 6, 8

Table 2. Digit sums of k

p *	<i>k</i> *
1	0+, 8+
3	6–, 8–
7	2–, 4–
9	0+, 2+

Table 3. REDs

3 First and last digits of F_p

The distribution of these is displayed in Table 4. A comparison of primes with composites (Table 5) illustrates that no distinction exists for the last digit. However, the first digit displays distinctions except when p = 7 with 2 as a common digit.

The first digit of each Fibonacci number occurs at a specific position, n, in the series. The following positions occur in a regular pattern as shown by $(n_j - n_{j-1})$ in Table 6. As noted above, the first digit of F_p seems to offer a distinction between primes and composites

1^{st} digit \rightarrow	1	2	3	4	5	6	7	8	9
Last↓									
1	✓	✓	✓	✓	✓	✓	✓	×	✓
2	✓	✓	✓	✓	✓	✓	×	✓	×
3	✓	✓	×	✓	✓	✓	✓	✓	×
4	✓	✓	✓	✓	×	×	✓	✓	×
5	✓	✓	✓	×	✓	✓	✓	×	✓
6	✓	✓	✓	✓	×	✓	×	×	✓
7	✓	✓	✓	✓	✓	×	×	×	✓
8	✓	✓	✓	✓	×	✓	×	×	×
9	✓	✓	✓	✓	✓	×	✓	✓	×
0	✓	✓	✓	×	✓	\checkmark	×	✓	×

Table 4. First and last digits of F_p

*	Pri	mes	Composites		
р.	1 st digit	Last digit	1 st digit	Last digit	
1	2, 8, 3	1, 9	1	1, 9	
3	2, 4, 8, 9	3, 7	5	3	
7	1, 2	3, 7, 3	2, 4	3, 7	
9	5	9	1, 4, 9	1, 9	

Table 5. Comparison of primes and composites

1 st digit	$1^{st} n_j$	$(n_j - n_{j-1})$ patterns
1	7	5, 5, 4, 1, 4, 1, 4, 5, 4, 1, 4, 1, 4, 5, 5, 4, 1, 4, 1, 4, 5,
2	8	5, 5, 5, 9, 5, 5, 5, 5, 5, 9, 5, 5, 5, 9,
3	4	5, 5, 1, 4, 5, 5, 1, 4, 5, 1, 4, 5, 5, 1, 4, 5, 5,
4	19	5, 1, 9, 5, 14, 5, 5, 14, 5, 19, 5,
5	5	5, 19, 5, 19, 5, 19, 19, 5,
6	15	5, 19, 24, 19, 5, 19,
7	25	19, 5, 19, 24, 19,
8	6	5, 19, 24, 19, 5,
9	16	43, 24, 19,

Table 6. Some patterns

NI	n = p has		
	Primes	Composites	$p_i - p_{i-1}$
1	7, 17	31, 41, 79	10, 14, 10, 38
2	13, 23, 47, 61	37	10, 14, 10, 14
3	71	-	-
4	43	19, 43	24, 24
5	5, 29, 101	53	24, 24, 48
6	-	-	-
7	-	-	-
8	11, 73, 97	-	62, 24
9	83	-	-

Since only n = p yields primes these are sieved out (Table 7) [1] and they exhibit regular patterns.

Table 7. First digit parities

In Table 7 for first digits equal to 3, 8 or 9, the corresponding F_p are all primes. There are no prime values when the first digit is 6 or 7, but a first digit of 1 or 2 gives the most values of p with a mixture of primes and composites.

4. F_p neighbours

To calculate primitive Fibonacci triples [4] the relationships set out in Table 8 were used

	F	Б		*	Digit sum of K		
p	\boldsymbol{F}_{p-1}	$p-1$ F_{p+1} $p-1$		P	Primes	Composites	
1	Кр	$Kp \pm 1$		1	1, 5, 9	2, 3	
3	$Kp \pm 1$	Кр		3	1, 2, 3, 6, 9	1, 9	
7	$Kp \pm 1$	Кр		7	3, 8, 9	6, 8, 9	
9	Кр	$Kp \pm 1$		9	6	2, 3, 4, 8	
Table 8				Table 9			

The values of *K* were calculated $(F_{p\pm 1}/p)$ in the range $7 \le p \le 107$ and the digital sum of *K* were compared for primes and composites (Table 9). The distributions are clear for $p^* = 1, 9$, but $p^* = 3, 7$ have overlaps.

A better result is obtained if we compare the digit sum of individual components of Fibonacci number triples $(F_{p-2} + F_{p-1} = F_p)$ in the range $7 \le p \le 107$ (24 primes). The results in Table 10 show parity distinction, which provide a further guide to primality.

<i>p</i> *	Digit sun	ns of F_{p-2}	Digit sur	Digit sums of <i>F</i> _{p-1} Digit sums		
	Primes	Composites	Primes	Composites	Primes	Composites
1	2, 7, 8	5, 7	1, 3, 8, 9	6, 8	1, 8	4
3	1, 2, 5, 7, 8	2	1, 8, 9	3	1, 8	4, 5
7	1, 2, 5, 7	4, 8	6, 8, 9	1,9	1, 4	5, 8
9	2	4, 5, 7	3	1, 6, 8	5	4, 5, 8

Table 10. Fibonacci number triple digit sum parities

5 Concluding comments

Further analysis along these lines can be made so that indications of primality build up and increase the probability of testing the primality of F_p . The results outlined here can then be extended to consider probabilistic primality testing [7].

References

- [1] Erdös, P., E. Jabotinsky. On Sequences of Integers Generated by a Sieving Process. *Nedelandse Akademie van Wetenschappen. Series A*. 61, 1958, 115–128.
- [2] Leyendekkers, J. V., A. G. Shannon. Fibonacci Numbers within Modular Rings. Notes on Number Theory and Discrete Mathematics. Vol. 4, 1998, No. 4, 165–174.
- [3] Leyendekkers, J. V., A. G. Shannon. The Structure of the Fibonacci Numbers in the Modular Ring Z₅. Notes on Number Theory and Discrete Mathematics. Vol. 19, 2013, No. 1, 66–72.
- [4] Leyendekkers, J. V., A. G. Shannon. Fibonacci and Lucas Primes. Notes on Number Theory and Discrete Mathematics. Vol. 19, 2013, No. 2, 49–59.
- [5] Leyendekkers, J. V., A. G. Shannon. The Pascal–Fibonacci Numbers. Notes on Number Theory and Discrete Mathematics. Vol. 19, 2013, No. 3, 5–11.
- [6] Leyendekkers, J. V., A. G. Shannon. Fibonacci Primes. Notes on Number Theory and Discrete Mathematics. Vol. 20, 2014, No. 2, 6–9.
- [7] Watkins, J. J. *Number Theory: A Historical Approach*. Princeton and Oxford: Princeton University Press, 2014, 271–272.