Mladen Vassilev-Missana
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 19, 2013, Number 1, Pages 44–49
Full paper (PDF, 159 Kb)
Details
Authors and affiliations
Mladen Vassilev-Missana
5 V. Hugo Str., 1124 Sofia, Bulgaria
Abstract
In the paper new explicit formulae for the prime counting function π are proposed and proved. They depend on arbitrary positive arithmetic function which satisfies certain condition. As a particular case a formula for π depending on Euler’s function φ is obtained. To the author’s best knowledge such kind of formulae are proposed for the first time in the mathematical literature.
Keywords
- Prime number
- Composite number
- Arithmetic function
AMS Classification
- 11A25
- 11A41
References
- Atanassov, K. A new formula for the n-th prime number. Comptes Rendus de l’Academie bulgare des Sciences, Tome 54, 2001, No. 7, 5-6.
- Atanassov, K. On a new formula for the n-th prime number. Notes on Number Theory and Discrete Mathematics, Vol. 10, 2004, No. 1, 24.
- Atanassov, K., A formula for the n-th prime number, Comptes Rendus de l’Academie bulgare des Sciences, Tome 66, No. 4, 2013, 503-506.
- Atanassov, K., M. Vassilev-Missana. On explicit formulae for prime and twin prime numbers. Italian Journal of Pure and Applied Mathematics, No. 20, 2006, 103-120.
- Ribenboim, P. The New Book of Prime Number Records (3rd Edition), Springer-Verlag, New York, 1996.
- Hardy, G. H., E. M. Wright An Introduction to the Theory of Numbers (5th Edition), Oxford, England, Clarendon Press, 1979.
- Vassilev-Missana, M. Three Formulae for n-th Prime and Six for n-th Term of Twin Primes. Notes on Number Theory and Discrete Mathematics, Vol. 7, 2001, No. 1, 15–20.
- Sándor, J., B. Crstici. Handbook of Number Theory II, Kluwer, London, 2004.
- Sierpiński,W. Elementary Number Theory (2nd Edition), North Holland, Amsterdam, 1988.
Related papers
Cite this paper
Vassilev-Missana, M. (2013). New explicit formulae for the prime counting function. Notes on Number Theory and Discrete Mathematics, 19(1), 44-49.