Jeffrey Stopple

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 18, 2012, Number 4, Pages 47—53

**Download full paper: PDF, 164 Kb**

## Details

### Authors and affiliations

Jeffrey Stopple

*Mathematics Department, UC Santa Barbara
Santa Barbara CA 93106, United States
*

### Abstract

We compute, for a CM elliptic curve *E* defined over a real quadratic field *F*, the details of an example of Zagier’s conjecture. This relates *L*(*E*, 2) to values of the elliptic dilogarithm function at a divisor in the Jacobian of *E* which arises from *K*-theory.

### Keywords

- Diophantine equation
- Factorial
- Fibonacci
- Brocard-Ramanujan

### AMS Classification

- Primary 11G40
- Secondary 11G05 11G55 19F27

### References

- Cremona, J., E. Whitley, Periods of cusp forms and elliptic curves over imaginary quadratic fields, Math. Comp., Vol. 62, 1994, 407–427.
- Dokchitser, T., R. de Jeu, D. Zagier, Numerical verification of Beilinson’s conjecture for
*K*_{2}of hyperelliptic curves, Compos. Math., Vol. 142, 2006, 339–373. - Goncharov, A., A. Levin, Zagier’s conjecture on
*L(E, 2)*, Invent. Math., Vol. 132, 1998, 393–432. - Gross, B., Arithmetic on Elliptic Curves with Complex Multiplication, Springer Lecture Notes in Mathematics, Springer, Berlin, Vol. 776, 1980.
- Ramakrishnan, D., Regulators, algebraic cycles, and values of
*L*-functions, in Algebraic*K*theory and algebraic number theory, Contemporary Mathematics, Vol. 83, 1987. - Silverman, J., Computing heights on elliptic curves, Math. Comp., Vol. 51, 1988, 339–358.
- Silverman, J., Advanced Topics in the Arithmetic of Elliptic Curves, Springer Graduate Texts in Mathematics, Vol. 151, 1994.
- Stopple, J. Stark conjectures for CM elliptic curves over number fields, J. Number Theory, Vol. 103, 2003, 163–196.
- Zagier, D., Polylogarithms, Dedekind zeta functions, and the algebraic
*K*-theory of fields, in Arithmetic Algebraic Geometry (Texel, 1989) Progr. Math., Birkhäuser Boston, Vol. 89,

1991, 391–430.

## Related papers

## Cite this paper

APA Stopple, J. (2012). On Zagier’s conjecture for *L(E, 2)*: A number field example. Notes on Number Theory and Discrete Mathematics, 18(4), 47-53.

Stopple, Jeffrey . “On Zagier’s Conjecture for *L(E, 2)*: A Number Field Example.” Notes on Number Theory and Discrete Mathematics 18, no. 4 (2012): 47-53.

Stopple, Jeffrey. “On Zagier’s Conjecture for *L(E, 2)*: A Number Field Example.” Notes on Number Theory and Discrete Mathematics 18.4 (2012): 47-53. Print.