Yilun Shang
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 17, 2011, Number 3, Pages 10–12
Full paper (PDF, 121 Kb)
Details
Authors and affiliations
Yilun Shang ![]()
Institute for Cyber Security, University of Texas at San Antonio
San Antonio, Texas 78249, USA
Abstract
We present alternative expressions for modularity in graphs. Modularity is used as a measure to characterize the community of networks, which is one of the most important features in real-world networks, especially social networks.
Keywords
- Modularity
 - Community structure
 
AMS Classification
- 05C50
 
References
- Arenas, A, A. Fernández, S. Gómez. Analysis of the structure of complex networks at different resolution levels. New J. Phys., 10 (2008) 053039
 - Danon, L., A. Díaz-Guilera, J. Duch, A. Arenas. Comparing community structure identification. J. Stat. Mech.: Theory Exp., 2005 P09008
 - Fortunato, S. Community detection in graphs. Phys. Rep., 486 (2010) 75–174
 - Kumpula, J. M., J. Saramäki, K. Kaski, J. Kertész. Limited resolution in complex network community detection with Potts model approach. Eur. Phys. J. B, 56 (2007) 41–45
 - Mieghem, P. V., X. Ge, P. Schumm, S. Trajanovski, H. Wang. Spectral graph analysis of modularity and assortativity. Phys. Rev. E, 82 (2010) 056113
 - Newman, M. E. J. Modularity and community structure in networks. Proc. Natl. Acad. Sci., 103(2006) 8577–8582
 - Newman, M. E. J., M. Girvan. Finding and evaluating community structure in networks. Phys. Rev. E, 69 (2004) 026113
 - Weisstein, E. W. CRC Concise Encyclopedia of Mathematics. CRC Press, 2003
 
Related papers
Cite this paper
Shang, Y. (2011). A characterization of modularity in graphs. Notes on Number Theory and Discrete Mathematics, 17(3), 10-12.
								