Note on φ, ψ and σ-functions. Part 2

Krassimir T. Atanassov
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 16, 2010, Number 3, Pages 25–28
Full paper (PDF, 125 Kb)

Details

Authors and affiliations

Krassimir T. Atanassov
Department of Bioinformatics and Mathematical Modelling
IBFBME – Bulg. Academy of Sci.
Acad. G. Bonchev Str. Bl. 105, Sofia-1113, Bulgaria

Abstract

An interesting property of arithmetic functions φ, ψ and σ is being discussed and illustrated.

Keywords

  • Arithmetic function φ
  • Arithmetic function ψ
  • Arithmetic function σ

AMS Classification

  • 11A25

References

  1. Atanassov K., Some assertions on φ and σ functions, Bulletin of Number Theory
    and Related Topics, Vol. XI (1987), No. 1, 50-63.
  2. Atanassov, K. Note on φ, ψ and σ functions. Notes on Number Theory and Discrete Mathematics, Vol. 12, 2006, No. 4, 25-28.
  3. Fomenko, A., Statistical Chronology, In Series “Mathematics and Cybernetics”, No. 7, Znanie, Moskow, 1990 (in Russian).
  4. Nagell T., Introduction to number theory, John Wiley & Sons, New York, 1950.
  5. Nosovskii, G., A. Fomenko, New Chronology and Conception of the Ancient History of Russia, England and Rome, Moskow Goverment University, Moskow, Vol. 1 and 2, 1996 (in Russian).
  6. Tabov, J., The Fall of Old Bulgary, Morant, Sofia, 1997 (in Bulgarian).

Related papers

  1. Atanassov, K. (2011). Note on φ, ψ and σ-functions. Part 3. Notes on Number Theory and Discrete Mathematics, 17(3), 13-14.
  2. Atanassov, K. (2011). Note on φψ and σ-functions. Part 4. Notes on Number Theory and Discrete Mathematics, 17(4), 69-72.

Cite this paper

Atanassov, K.T. (2010). Note on φ, ψ and σ-functions. Part 2. Notes on Number Theory and Discrete Mathematics, 16(3), 25-28.

Comments are closed.