Some q-series inversion formulae

A. G. Shannon
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 13, 2007, Number 2, Pages 15–18
Full paper (PDF, 37 Kb)

Details

Authors and affiliations

A. G. Shannon
Warrane College, The University of New South Wales, Kensington 1465, &
Raffles KvB, 99 Mount Street, North Sydney, NSW 2065, Australia

Abstract

This paper considers some q-extensions of binomial coefficients formed from rising factorial coefficients. Some of the results are applied to a Möbius Inversion Formula based on extensions of ideas initially developed by Leonard Carlitz.

Keywords

  • q-series
  • Binomial coefficients
  • Möbius function
  • Rising factorials
  • Exponential functions

AMS Classification

  • 11B65
  • 11B39
  • 05A30

References

  1. Carlitz, L. q-Bernoulli Numbers and Polynomials. Duke Mathematical Journal. 15 (1948): 987-1000.
  2. Carlitz, L. Expansions of q-Bernoulli Numbers. Duke Mathematical Journal. 25 (1958): 355-364.
  3. Carlitz L. Some Integral Equations satisfied by the Complete Elliptic Integrals of the First and Second Kind. Bolletino della Unione Matematica Italiana. (3) 16 (1961): 264-268.
  4. Carlitz, L. Characterization of Certain Sequences of Orthogonal Polynomials. Portugaliae Mathematica. 20 (1961): 43-46.
  5. Carlitz, L. Generating Functions for Powers of Certain Sequences of Numbers. Duke Mathematical Journal. 29 (1962): 521-537.
  6. Carlitz, L. A q-identity. Monatshefte fur Mathematik. 67 (1963): 305-310.
  7. Carlitz, L. A Note on Products of Sequences. Bolletino della Unione Matematica Italiana. (4) 1 (1968): 362-365.
  8. Carlitz, L. Generating Functions. The Fibonacci Quarterly. 7 (1969): 359-393.
  9. Cauchy, A.L. Memoire sur les functions don plusiers valuers. Comptes Rendus de l’Academie des Sciences. 17 (1843): 526-534.
  10. Kim, T. Some Formulae for the q-Bernoulli and Euler Polynomials. Journal of Mathematical Analysis and Applications. 273 (2002): 236-242.
  11. Kim, T. Analytic Continuation of Multiple q-zeta Functions and their Values at Negative Integers. Russian Journal of Mathematics & Physics. 11 (2004): 71-76.
  12. Kim, T. & S.H. Rim. On Changed q-Euler Numbers and Polynomials. Advanced Studies in Contemporary Mathematics. 9 (2004): 81-86.

Related papers

Cite this paper

Shannon, A. G. (2007). Some q-series inversion formulae. Notes on Number Theory and Discrete Mathematics, 13(2), 15-18.

Comments are closed.