Generalized Fibonacci and Lucas sequences with Pascal-type arrays

Charles K. Cook and A. G. Shannon
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 12, 2006, Number 4, Pages 1–9
Full paper (PDF, 53 Kb)

Details

Authors and affiliations

Charles K. Cook
Emeritus, University of South Carolina
Sumter, SC 29150

A. G. Shannon
Warrane College, The University of New South Wales, Kensington 1465, &
Raffles KvB, 99 Mount Street, North Sydney, NSW 2065, Australia

Abstract

We re-label the Fibonacci and Lucas sequences respectively by
{F0,n} ≡ {Fn} and {F1,n} ≡ {Ln}
and consider
Fm,n = Fm−1, n−1 + Fm−1, n+1, m, n ≥ 1,
as a generalization of the well-known identity
Ln = Fn−1 + Fn+1,
where
Fm,n = Fm,n−1 + Fm, n−2, m ≥ 1, n > 2.

AMS Classification

  • 05A10
  • 11B39

References

  1. M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions . New York: Dover Publications, Ninth Printing, 1970.
  2. Br U. Alfred (Brousseau). “Seeking the Lost Goldmine or Exploring for Fibonacci Factorizations.” The Fibonacci Quarterly 3.2 (1965): 129-130.
  3. B.A. Bondarenko. Generalized Pascal Triangles and Pyramids. (Richard A Bollinger (trans.) Santa Clara: The Fibonacci Association, 1993.
  4. T. Brennan. “Problem H15.” The Fibonacci Quarterly 1.1 (1963): 47.
  5. L. Carlitz and J. Riordan. “Two Element Lattice Permutation Numbers and their q-Generalizations.” Duke Mathematical Journal 31.4 (1964): 371-388.
  6. M. A. Feinberg. “Lucas’s Triangle.” The Fibonacci Quarterly 5.5 (1967): 486- 490.
  7. H.H. Ferns. “Products of Fibonacci and Lucas Numbers.” The Fibonacci Quarterly 7.1 (1969): 1-13.
  8. H.W. Gould. “The Bracket Function and Fontené-Wrad Generalized Binomial Coefficients with Applications to Fibonomial Coefficients.” The Fibonacci Quarterly 7.1 (1979): 23-40, 55.
  9. H.W. Gould & H.W. Greig. “A Lucas Triangle Primality Criterion due to that of Mann-Shanks.” The Fibonacci Quarterly 23.1 (1985): 66-69.
  10. V.E. Hoggatt Jr. “Fibonacci Numbers and Generalized Binomial Coefficients.” The Fibonacci Quarterly 5.4 (1967): 383-400.
  11. A.F. Horadam. “Generating Identities for Generalized Fibonacci and Lucas Triples.” The Fibonacci Quarterly 15.4 (1977): 289-292.
  12. H. Hosoya. “Fibonacci Triangle.” The Fibonacci Quarterly 14.2 (1976): 173-179.
  13. D. Jarden. Recurring Sequences. Jerusalem: Riveon Lematematika, 1966.
  14. S.K. Lando. Lectures on Generating Functions. Providence, R.I.: American Mathematical Society, 2003.
  15. A.G. Shannon and A.F. Horadam. “Generalized Pell Numbers and Polynomials.” In F. Howard (ed.) Applications of Fibonacci Numbers, Volume 9 . Dordrecht: Kluwer, pp. 213-224.
  16. N.J.A. Sloane and S. Plouffe. Encyclopedia of Integer Sequences . New York: Academic Press, 1995.
  17. G.J. Tee. “Russian Peasant Multiplication and Egyptian Division in Zeckendorf Arithmetic.” The Australian Mathematical Society Gazette 30.5 , 2003: 267-276.
  18. V. Thébault. Les Récréations Mathématiques. Paris: Gauthier-Villars, 1952.
  19. R.F. Torretto and J.A. Fuchs. “Generalized Binomial Coefficients.” The Fibonacci Quarterly 2.4 (1964): 296-302.

Related papers

Cite this paper

Cook, C. K., Shannon, A. G. (2006). Generalized Fibonacci and Lucas sequences with Pascal-type arrays. Notes on Number Theory and Discrete Mathematics, 12(4), 1-9.

Comments are closed.