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ABSTRACT 
We re-label the Fibonacci and Lucas sequences respectively by 
 

{ } { }nn FF ≡,0  and { } { }nn LF ≡,1 , 
and consider 

,1,,1,11,1, ≥+= +−−− nmFFF nmnmnm  
 

as a generalization of the well-known identity 
 

,11 +− += nnn FFL  
where 

.2,1,2,1,, >≥+= −− nmFFF nmnmnm  

 
 

1. INTRODUCTION 
 

The purpose of this paper is primarily to collate and to relate a number of known Fib-
onacci results which are scattered in the literature. This is done in the context of a 
slightly new generalization of these numbers. 

The paper is in two inter-related parts.  In the first part, we generalize a result 
which connects the Fibonacci and Lucas numbers, namely 

 
.1,11 ≥+= +− nFFL nnn  (1.1)

 
Arising out of this is a Pascal-type array which is related to the Lucas numbers in the 
same way that the Pascal array is related to the Fibonacci numbers.  The second part 
of the paper then considers powers of such arrays and their rising diagonal sums 
which are elements of a generalized Pell sequence defined by 
 

,,1,0, 1021 kuunukuu nnn ==≥+= −−  (1.2)
 
which yields the ordinary Fibonacci numbers when k=1, and the ordinary Pell num-
bers when k=2. 
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2. A GENERALIZATION OF A FIBONACCI-LUCAS IDENTITY 
 

Consider the second order linear recursive sequences defined by the recurrence rela-
tion 

,2,0,2,1,, >≥+= −− nmFFF nmnmnm  (2.1)
 
with initial terms ,53,5 2,121,122,21,2

m
m

m
mmm FFFF ×==== ++ so that the Fibonacci and 

Lucas sequences can be re-labelled as 
 

{ } { }nn FF ≡,0  and { } { }nn LF ≡,1 . 
 
The sets of sequences are then inter-related by 
 

.2,1,1,11,1, >≥+= +−−− nmFFF nmnmnm  (2.2)
 
Proof:  The result follows from induction on n.  It is readily verified for n=3.  Sup-
pose the result is true for n=4,5,…,k.  Then 
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(from (2.1)
(inductive assumption)

as required.

Equation (2.2) is the same partial difference equation which is used with different 
boundary conditions to model lattice paths and to generate Catalan numbers in Carlitz 
and Riordan [5], while (2.1) and (2.2) are similarly used by Hosoya [12] to generate 
magic diamonds.  Other similarities are indicated in Bondarenko [3]. 
 
 It can then also be proved by induction that 
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For example, 
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and 
.1,1,1,11,1, >≥+= +−−− nmFFF nmnmnm  (2.4)
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n 1 2 3 4 5 6 7 
F0,n 1 1 2 3 5 8 13 

nF ,1  1 3 4 7 11 18 29 

nF ,2  5 5 10 15 25 40 65 

nF ,3  5 15 20 35 55 90 145 

nF ,4  25 25 50 75 125 200 325 

Table 1: Some examples of { }nmF ,  
Other familiar generalizations include 
 

F2m+1,nF2m,n = 52m F0,2n  

which reduces to  
 

LnFn = F2n  
when m=0. 
 
 

3. RISING DIAGONAL SEQUENCES 
 

If we now consider falling diagonal sequences in Table 1, then we can define 
 

.1,1,,21,1, ≥>+= −+− nmFFU nmnmnm  (3.1)
 
Some examples of Um,n are shown in Table 2.   

Note that U2,n{ }was called a “conjugate sequence” by Brousseau [2] and is 
listed as A000285 in [16] and that U3,n{ }is listed as A022388 in [16] without refer-
ence. 
 

N 1 2 3 4 5 6 7 
U2,n  4 5 9 14 23 37 60 
U3,n  6 13 19 32 51 88 134 
U4,n  20 25 45 70 115 185 300 
U5,n  30 65 95 160 255 415 670 

Table 2: Some examples of Um,n{ } 
For example, 

Uk,n = 2Uk−1,n−1 +Uk−1,n,k ≥ 2,n ≥1. 
and 
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which generalizes to 

∑
−

=
−+−=

1

0
2,0,1, ,,

m

j
jmnjmnm FwU  

 
(3.2)

 
where jiw ,  is defined by the partial recurrence relation (Feinberg [6]) 
 

,1,1,1,1,1, ≥>+= −−− jiwww jijiji  (3.3)
with boundary conditions 
 

wi,0 =1,i ≥ 0;wi,i = 2,i ≥1;wi, j = 0,i < j.
 
Proof.  The proof of (3.2) follows readily with induction on m. 
 
Some examples of wi, jare shown in Table 3, in which we note that the column se-
quences may be found in [1] and [16]. 
  

1 0 0 0 0 0 
1 2 0 0 0 0 
1 3 2 0 0 0 
1 4 5 2 0 0 
1 5 9 7 2 0 
1 6 14 16 9 2 

Table 3: Some examples of wi, j{ } 
  
This suggests that the { }jiw ,  ‘triangle’ is related to the Pascal triangle.  In fact, it is 
composed of the sum of two Pascal triangles, one of which is shifted down one row 
and across one column (Gould and Greig [9]): 
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4. POWERS OF THE ARRAYS 
 

We now consider these rising diagonal sequences as they arise in powers of arrays.  
Suppose we define the matrix A to the power k by 
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Ak = ai, j
(k )[ ] (4.1)

where 
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Some examples of )(
,
k
jia  are 
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Examples of kA  now follow with the associated rising diagonal sequences: 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1331
0121
0011
0001

A ,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

16128
0144
0012
0001

2A ,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

192727
0169
0013
0001

3A ,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1124864
01816
0014
0001

4A ,

 
{ } { },...5,3,2,1,1=nu , 

(Fibonacci)
 
 
 
 
 
 
{ } { },...29,12,5,2,1=nu , 

(Pell)
 
 
 
 
{ } { },...109,33,10,3,1=nu , 

(Horadam [11])
 
 
 
 
{ } { },...305,72,17,4,1=nu . 

(Thébault [18])
 
From these it can be inferred that 

.,1,2, 1021 kuunukuu nnn ==≥+= −−  (4.3)
If we accept this pattern, then  
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as a generalization of the corresponding well-known result for Fibonacci numbers. 
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Proof.  The proof follows by induction on n with the inductive step as follows. 
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Thus the general term of these sequences is 

.
2

4
2

4
4

1
1

2
1

2

2 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +−
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ++

+
=

++ nn

n
kkkk

k
u  (4.5)

We note in passing that when k = 2r we encounter another generalization of 
the Pell sequences as noted by Shannon and Horadam [15]. 
 
 

5. CONCLUDING COMMENTS 
 

There is plenty of scope for further investigations and it is appropriate to outline two 
of these since this is a conference presentation.  Firstly, if we consider the array, 
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and post-multiply it by Ak we find the rising diagonal sums form a generalized Lucas 
sequence: 

un (k) ≡ un = kun−1 + un−2 − (k −1), u0 = 3, u1 = 2k + 2, (5.1)
with 

un (1) = Ln+2 .
For example, 
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In addition one can use various arrays in Bondarenko [3] for higher order generaliza-
tions of the Fibonacci sequence.  More immediately, readers might like to find a 
closed form expression for the cumulative column sums of kA , that is, for 
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Secondly, consider the multiplicative analogy of (2.2) by defining: 
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n  (5.2)

with initial condition nn Fv =)0( .  Thus 
.1

)1(
+= nnn FFv  (5.3)

 
This arises quite naturally from the work of Ferns [7].  One can then proceed by tak-
ing logarithms of (5.2), or by letting 
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with initial condition ,)0(

nn Lw =  and so 
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Repeated applications of (5.3) and (5.5) lead respectively to 
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n 1 2 3 4 5 6 7 

)1(
nv  1 2 6 15 40 104 273 

)1(
nw  3 12 28 77 198 522 1363 

Table 4: Multiplicative sequences 
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Again, repeated applications of (5.6) and (5.7) can be used to establish that both se-
quences satisfy the same fifth order homogeneous linear recurrence relation (with an 
attractive symmetry among the coefficients), namely, 
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Bernoulli-Binet [17] forms can also be developed: 
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These numbers can also be related to generalized binomial coefficients [8,13,19], and 
thence to other Fibonacci [10] and Lucas [4] identities.  Moreover, if we utilize the 
notational convention fn = Fn+1, then we can find that the Hadamard product of the 
Fibonacci generating functions for fn{ }and Fn{ }is the generating function for 

un
(1){ }[14].  This can obviously be extended indefinitely. 

 Gratitude is expressed to an anonymous referee for constructive criticism of an 
earlier draft. 
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