A Fermatian Staudt–Clausen Theorem

A. G. Shannon
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 10, 2004, Number 4, Pages 89–99
Full paper (PDF, 120 Kb)

Details

Authors and affiliations

A. G. Shannon
Warrane College, The University of New South Wales, Kensington 1465, &
KvB Institute of Technology, 99 Mount Street, North Sydney, NSW 2065, Australia

Abstract

This paper looks at the Staudt–Clausen theorem within the framework of various generalization of the Bernoulli numbers. The historical background to the problem is reviewed, and a solution to a problem of Morgan Ward is put forward. Generalized Hurwitz series are utilised in the development of the results.

AMS Classification

  • 11B68
  • 11A07
  • 11B39

References

  1. L. Carlitz. “An Analogue of the von Staudt-Clausen Theorem.” Duke Mathematical Journal. 3 (1937): 503-517.
  2. L. Carlitz. “An Analogue of the Staudt-Clausen Theorem.” Duke Mathematical Journal. 7 (1941): 62-67.
  3. L. Carlitz. “The Coefficients of the Reciprocal of a Series.” Duke Mathematical Journal. 8 (1941): 689-700.
  4. L. Carlitz. “q-Bernoulli Numbers and Polynomials.” Duke Mathematical Journal. 15 (1948): 987-1000.
  5. L. Carlitz. “Some Properties of Hurwitz Series.” Duke Mathematical Journal. 16 (1949): 285-295.
  6. L. Carlitz. “A Note on Irreducibility of the Bernoulli and Euler Polynomials.” Duke Mathematical Journal. 19 (1952): 475-481.
  7. L. Carlitz. “The Schur Derivative of a Polynomial.” Proceedings of the Glasgow Mathematical Association. 1 (1953): 159-163.
  8. L. Carlitz. “A Degenerate Staudt-Clausen Theorem.” Archiv der Mathematik. 7 (1956): 28-33.
  9. L. Carlitz. “A Note on the Staudt-Clausen Theorem.” American Mathematical Monthly. 64 (1957): 186-188.
  10. L. Carlitz. “Criteria for Kummer’s Congruences.” Acta Arithmetica. 6 (1960): 375-390.
  11. L. Carlitz. “The Staudt-Clausen Theorem.” Mathematics Magazine. 35 (1961): 131-146.
  12. L. Carlitz. “Some Arithmetic Sums Associated with the Greatest Integer Function.” Archiv der Mathematik. 12 (1961): 34-42.
  13. G. Fontené. “Generalization d’une formule connue.” Nouv. Ann. Math. 15 (1915): 112.
  14. A.F. Horadam & A.G. Shannon. “Ward’s Staudt-Clausen Problem.”  Mathematica Scandinavica. 39 (1976): 239-250.
  15. F. H. Jackson. “q-difference Equations.” American Journal of Mathematics. 32 (1910): 305-314.
  16. A. G. Shannon. “Arbitrary Order Circular Functions: An Extension of Results of Glaisher and Lucas.” Journal of Natural Science & Mathematics. 19 (1979): 71-76.
  17. A. G. Shannon. “Some Fermatian Special Functions.” Note on Number Theory & Discrete Mathematics. 9 (2003): 73-82.
  18. A. G. Shannon. “Some Properties of Fermatian Numbers.” Note on Number Theory & Discrete Mathematics: 10 (2004), 2: 25-33.
  19. A. Sharma. “q-Bernoulli and Euler Numbers of Higher Order.” .Duke Mathematical Journal. 25 (1958): 343-353.
  20. H. S. Vandiver. “Simple Explicit Expressions for Generalized Bernoulli Numbers.” Duke Mathematical Journal. 8 (1941): 575-584.
  21. M. Ward. “A Calculus of Sequences.” American Journal of Mathematics. 58 (1936): 255-266.

Related papers

Cite this paper

Shannon, A. G. (2004). A Fermatian Staudt–Clausen Theorem. Notes on Number Theory and Discrete Mathematics, 10(4), 89-99.

 

Comments are closed.