An extension of Euler’s prime-generating function

J. V. Leyendekkers and A. G. Shannon
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 10, 2004, Number 4, Pages 100–105
Full paper (PDF, 90 Kb)

Details

Authors and affiliations

J. V. Leyendekkers
The University of Sydney, 2006 Australia

A. G. Shannon
Warrane College, Kensington, NSW 1465,
& KvB Institute of Technology, North Sydney, NSW 2060, Australia

Abstract

Using integer structure, six simple functions are obtained to give values for x that result in composite N in Euler’s prime generating function N = x2 + x + p; the remaining values for x yield primes. In 0 ≤ x ≤ 500, with p = 41, there are 314 values for x which generate primes, the formation of which follows an orderly pattern based on integer structure. All primes can be generated from N = 6r ± 1, with specific values of r being rejected, in an analogous manner to the x values.

AMS Classification

  • 11A41
  • 11A07

References

  1. J.H. Conway and R.K. Guy, The Book of Numbers. New York: Springer-Verlag, 1996.
  2. Marcus du Sautoy, The Music of the Primes: Searching to Solve the Greatest Mystery in Mathematics. New York: Harper Collins, 2003.
  3. L. Euler, Opera Omnia. Leipzig: Teubner, 1911.
  4. K. Heegner, Diophantische Analysis und Modulfunktionen, Mathematische Zeitschrift. 56, (1952): 227-253.
  5. J.V. Leyendekkers, J.M. Rybak & A.G Shannon, Analysis of Diophantine Properties Using Modular Rings with Four and Six Classes. Notes on Number Theory & Discrete Mathematics. 3 (2) (1997): 61-74.
  6. J.V. Leyendekkers & A.G. Shannon, The Analysis of Twin Primes within Z6. Notes on Number Theory & Discrete Mathematics. 7(4) (2001): 115-124.
  7. J.V. Leyendekkers & A.G. Shannon, Some Characteristics of Primes within Modular Rings. Notes on Number Theory & Discrete Mathematics. 9(3) (2003):49-58.
  8. J.V. Leyendekkers & A.G. Shannon, The Row Structure of Squares in Modular Rings. International Journal of Mathematical Education in Science & Technology. 35(6) (2004): 932-936.
  9. Hans Riesel. Prime Numbers and Computer Methods for Factorization. Progress in Mathematics Volume 126. Boston: Birkhauser, 1994.
  10. N.J.A. Sloane, Sequences A003173/M087, The On-Line Encyclopedia of Integer Sequences. http://www.research.att.eom/~ njas/sequences/.
  11. H.M. Stark, On Complex Quadratic Fields with Class Number Equal to One. Transactions of the American Mathematical Society. 122, (1966): 112-119.

Related papers

Cite this paper

Leyendekkers, J. V., and Shannon, A. G. (2004). An extension of Euler’s prime-generating function. Notes on Number Theory and Discrete Mathematics, 10(4), 100-105.

 

Comments are closed.