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Abstract 

Using integer structure, six simple functions are obtained to give values 
for x that result in composite N in Euler’s prime generating function   

pxxN ++= 2 ; 
the remaining values for x yield primes.  In ,5000 ≤≤ x with p=41, there 
are 314 values for x which generate primes, the formation of which fol-
lows an orderly pattern based on integer structure.  All primes can be gen-
erated from N=6r±1, with specific values of r being rejected, in an analo-
gous manner to the x values. 
 

1. Introduction 
About the year 1772, Euler [3] found that that the function  
 

pxxN ++= 2  (1.1)
 
where p=2,3,5,11,17,41, gave N as prime for .20 −≤≤ px  
 
However, this function continues to generate primes for selected values of x, up to ‘large’ 
numbers. The values of x which yield composite values for N may be calculated using 
modular rings on the basis of integer structure as we shall show. 
 

2. Composite N 
Let 

xqpy −= ,  with q=1,2,3,4,… . (2.1)
 
Substitution of Equation (2.1) into Euler’s Equation (1.1) gives 
 

.)21( 222 yyqyqppqN −+−++=  (2.2)
Now let 

).)(( bqpaqpN ++=  (2.3)
Equating (2.2) and (2.3) gives 

( )( ) ( )( ) 2
1

142121 2
1

2
1 +−+++−= yqqyqa qq , (2.4)

and 
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( )( ) ( )( ) 2
1

142121 2
1

2
1 +−+−+−= yqqyqb qq . (2.5)

Case 1: q=1. 
In this case, 

.)1()1(

,)1()1(
2

1

2
1

yyb

yya

−−−=

−+−=
 (2.6)

 
We need to consider when (1-y) is a square, because integer values for a and b yield 
composite values for N.  An analysis of squares is most easily done by using the modular 
ring 4Z  since squares are only found in the classes 40 (even) and 41 (odd) [5]. 
 
(1-y) odd.  When (1-y) is odd but not divisible by 3, the squares in 4Z are given by [7,8]: 
 

14)1( 1 +=− Ry . (2.7)
with 

.,...3,2,1,0,61 == jKR j . 
For j even, 

( ),13
2
1

−= nnK j                                 Class A; (2.8a)
for j odd, 

),13(
2
1

+= nnK j                                 Class B; (2.8b)
but  

,...,3,2,1,0),32)(31(1 =++= nnnR   Class C (2.8c)
if 3|(1-y). 
On substituting Equation (2.7) into Equation (2.1) we get the x values which yield com-
posites; that is,  

14Rpx +=  
as in Table 1. 
 
(1-y) even.  All even squares in 4Z are given by 

.4 0RN =  (2.9)
 
However, { };2,0)1( 442

1
∈− y that is, 

⎭
⎬
⎫

+=−
=−

EClassry
DClassry

24)1(
4)1(

2

0
2

1

2
1

 (2.10)

so that 

( )
.,...3,2,1,0,

12
,4

202
2

2
0

0 =
⎩
⎨
⎧

+
= rrwith

r
orr

R  

The various functions are summarised in Table 2. 
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(1-y)=kp.  This is a special case with k=0,1,2,3,… .This case yields 
 

,)(
,)(

2
1

2
1

kpkpb
kpkpa

−=
+=  

so that 
( )( ){ }kpkpbpap −×+=++ 21))(( . 

Thus N will be composite when 
1)1( −+= pkx  

as in Table 3. 
 

 A B C 
1R  3n(3n-1) 3n(3n+1) (1+3n)(2+3n) 

y -12n(3n-1) -12n(3n+1) -4(1+3n)(2+3n) 
x 12n(3n-1)+p 12n(3n+1)+p 4(1+3n)(2+3n)+p 

Table 1: Values of x which yield composite N when (1-y)  
or square root function Equation (2.4) is odd 

 
 D E 
0R  2

04r  ( )2
2 12 +r  

y ( )2
0161 r−  ( )( )2

2 1241 +− r  
x ( )( )116 2

0 −+ pr  ( ) ( )3116 22 +++ prr  
Table 2: Values of x which yield composite N when (1-y)   

or a square root function Equation (2.4) is even 
 

(1-y) Function for x x N (composite 
EVEN  D  2

01640 r+  40,56,104,184,296,440,
616 

1681,3233,10961,34081, 
87953 

E  )1(1644 22 ++ rr  44,76,140,236,364,524 2021,5893,19781,55973, 
132901 

ODD    A 41+12n(3n-1) 41,65,161,329,569 1763,4331,26123,108611, 
324371 

B 41+12n(3n+1) 41,89,209,401,665 1763,8051,43931,161243, 
442931 

C 41+4(1+3n)(2+3
n) 

49,121,265,481,769 2451,14803,70531,231883, 
592171 

= kp 41(1+k)-1 40,81,122,163,204,245,
286,327,368,409,450, 
491,532 

1681,6683,15047,26773, 
41861,60311,82123, 
107297,135833,167731, 
202991,241613,283597 

Table 3: Invalid values of x when p=41, q=1 
(underlined values are duplicates) 

 
Case 2: q>1 
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The same method as above can be used in this case.  We distinguish the cases where q is 
even and odd. 
When q is even, the square root function is always odd, so that 
 

141)42( 1 +=+−+ Ryqq  (2.12)
 
from which the value of y and hence of x can be found.  The values for 1R  are taken from 
Table 1. 
 
When q is odd, the square root function is even, except when an even square can be fac-
tored out to leave an odd residue.  In this case Tables 1 and 2 might both be used.  Thus 
 

041)42( Ryqq =+−+  (2.13)
 
and in some cases Equation (2.12) is also needed (Table 4).  Results for 5000 ≤≤ x  can 
be found in Table 4. 
 

q Functions for x* Invalid x 
2 81+ 12

1 R  82,84,87,91,96,102,109,117,126,136,147,159,172,186,201,217,234,252,
271,291,312,334,357,381,406,432,459,487 
 

3** )365( 03
1 R+  122,123,127,130,138,143,155,162,178,187,207,218,242,255,283,298, 

330,347,383,402,442,463 
 

4 )6(164 14
1 −+ R  163,164,170,173,185,190,208,215,239,248,278,289,325,338,380,395, 

443,460 
5 

)94(205
)2(205

05
1

15
4

−+
−+

R
R

 
205,213,237,261,309,349,421,477 
 
216,232,268,300,360,408,492 
 

6 16
1244 R+  244,245,246,249,251,256,259,266,270,279,284,295,301,314,321,336, 

344,361,370,389,399,420,431,454,466,491 
7 

)16(287
)154(287

07
1

17
1

−+
−+

R
R

 

286,302,326,374,422 
 
286,287,299,302,326,331,367,374,422,431,491 

8 )20(328 18
1 −+ R  327,328,342,345,373,378, ,427,483,492 

9 
)254(369
)244(369

09
1

19
1

−+
−+

R
R

 

369,385,425,473 
 
368,388,420,480 

10 )30(410 110
1 −+ R  407,409,410,416,418,428,431,445,449,467,472,494,500 

11 
)364(451
)354(451

011
1

111
1

−+
−+

R
R

 

450,474 
 
451,471 

12 )42(492 112
1 −+ R  489,491,492,496 
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Table 4:  Underlined values are duplicates; * from Equations (2.12) and (2.13) and Tables 
1 and 2; ** 1R values are the same as those given by 0R  (E) 

3. Final Remarks 
Table 5 shows how the production of primes changes as x increases.  Initially the produc-
tion drops sharply, but then it stabilises around 50%.  This suggests that primes will be 
produced up to large values of x.  Table 6 shows changes of composite numbers with q. 
 

Range of primes Range of x No. of primes generated 
41-10141 0-100 86 

10141-40241 101-200 70 
40241-88547 201-300 53 

92153-158843 301-400 60 
162853-249541 401-500 55 
251543-359441 501-600 56 
361843-490741 601-700 49 
497771-631271 701-800 51 

Table 5: Production of primes 
 

q 1 2 3 4 5 6 7 8 9 10 11 12 
No. of 

composites 
23 28 22 18 15 26 10 8 7 12 4 2 

Table 6: Production of composites 
 
Euler’s results in isolation do not show the true picture.  The distribution of primes is 
comparatively orderly when viewed from the perspective of the integer structure in the 
framework of modular rings.  Essentially, Euler’s function arises from the integer struc-
ture in an analogous manner to the simpler functions 6R±1. 
 
All the primes can be generated from 6R±1, using values of R which are compatible with 
the integer structure. For example, just as certain values of x were shown to be invalid for 
primes, there are invalid values of R which are given by (Table 7) [6] 
 

.,...3,2,1,0,/ =+= tptRR  (3.1)
 

Class of N Class of p /R  

16
46

+= RN
 

6

6

4
2  

)1(6
1 −p  

16
26

−= RN
 

6

6

4
2  

( ){ }
( ){ }pp

pp
21

1

2
1

3
1

2
1

3
1

++
++

 

Table 7: Values for /R  
 
When the class structure is taken into account, as has been done here, the building up of 
the primes is seen to be very straightforward.  The reader might like to try p=17 in Equa-
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tion (1.1).  Finally, we note that the form of (1.1) is used by modern writers too [2], but 
[9] uses the form  

.2 pxx +−  (3.2)
 
In this case we use y=x+1, since 
 

.)1()1( 22 pxxpxx ++=++−+   
 
For instance, x=42 yields p=1847, whereas y=43 gives the same prime. Conway and Guy 
[1] point out that Formula (3.2) represents primes for the consecutive numbers 
n=1,2,…,p-1 provided that 1-4p is one of the Heegner numbers [10]: 

{-1,-2,-3,-7,-11,-19,-43,-67,-163}. 
The determination of these numbers is known as Gauss’ class number problem.  Trying 
to determine whether there was a tenth number was a notorious problem for a long time.  
Heegner [4] published a proof that the list of nine was complete, but there was considera-
ble doubt about the validity of the proof until Stark [11] showed that the proof was essen-
tially correct.  The Heegner numbers have a number of arithmetical links with algebraic 
integers and transcendental numbers. 
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