Notes on the q-Stirling numbers of second kind

T. Kim, D.-W. Park and Y. S. Ro
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 7, 2001, Number 3, Pages 87–90
Full paper (PDF, 140 Kb)

Details

Authors and affiliations

T. Kim
Institute of Science Education
Kongju National University, Kongju 314-701, S. Korea

D.-W. Park
Department of Mathematics Education
Kongju National University, Kongju 314-701, S. Korea

Y. S. Ro
Department of Mathematics Education
Kongju National University, Kongju 314-701, S. Korea

Keywords

  • q-Stirling numbers
  • Stirling number
  • binomial coefficients

AMS Classification

  • 11B68

References

  1. L. Carlitz, q-Bernoulli numbers and polynomials. Duke Math. J. 15 (1948), 987-1000.
  2. K. Conrad, A q-analogue of Mahler expansion, Adv. Math. 153 (2000), 185-230.
  3. T. Kim and S.H.Rim, A note on q-integral and q-series, Advan. Stud. Contemp. Math. 2 (2000), 37-45.
  4. T. Kim, Sums products of q-Bemoulli numbers, Arch. Math. 76 (2001), 190-195.
  5. T. Kim et als, On multivariate p-adic q-integrals, J. Phys. A 34 (2001).
  6. T. Kim, On p-adic q-L-functions and sums of powers, Discrete Math. (2001).
  7. T. Kim, A note on p-adic q-Dedekind sums, Computes Rend. Acad. Bulga. Sci. (2001).
  8. T. Kim, On explicit formulas of p-adic q-L-functions, Kyushu J. Math. 48 (1994), 73-86.
  9. T. Kim, Multiple zeta values, Di zeta values and their application, Lecture Notes in Number Theory (Kyungnam Univ.). (1998), 31-95.

Related papers

Cite this paper

Kim, T., Park, D.-W. & Ro, Y. S. (2001). Notes on the q-Stirling numbers of second kind. Notes on Number Theory and Discrete Mathematics, 7(3), 87-90.

Comments are closed.