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1. Introduction

Throughout this paper Zp, Qp, C and Cp will respectively denote the ring of p-adic
rational integers, the field of p-adic rational numbers, the complex number field and
the completion of the algebraic closure of Qp. Let vp be the normalized exponential
valuation of Cp with |p|p = p~vpU) —p-1. When one talks of g-extension, q is variously
considered as an indeterminate, a complex number q E C, or a p-adic number q E Cp.

Ifg 6 C, one normally assumes |g| < 1 If g E Cp, then we assume |g—I|p < p~ ~ ,
so that gx = exp(.xlogg)4 for \x\p < 1. We define the g-analogue of a positive integer n
71

tobe [n]=1[n:q = The g-binomial coefficient for nonnegative integers m and n
with m > n is

_ [m]! _ (@m- D(gm~1-1)eee (gm~n+l - 1)
q [n]\[m —n\\ (gn —D(gn_1 —1) eme (g —1)

where the g-factorials are [n]! = [n] «[n —1] =< [2][1], [O]' = 1 (see [3]). Define the nth
g-power of a polynomial f(T) to be /(0d = 1 and —/(T)/(gT) *e/(gn_1T)
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for n > 1. Then the g-binomial theorem becomes

m / \
(1) @+T) (M9 =V (mI T
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Let (Eh)(x) = /2,(*+ 1) be the shift operator.

Then the g-difference operator is defined by

/£n N __™Mnq) _ "NM(nia)

The purpose of this note is to find the generating function of the g-Stirling numbers of
second kind using the above g-difference operator. By using this generating function,
we can give some formulae on g-Stirling numbers

2. g-ANALOGUE OF STIRLING NUMBERS OF SECOND KIND

For g € C with |g| < 1, the g-Stirling numbers of second kind were defined by L.
Carlitz as a numbers S2{n,k :q) such that

(2) [XIn = ]E"gG) ) [K]'S2(n,k :g),
k=0
from which Carlitz found

—0 &
3 s2(nk :,) = U) [*-i]", cf [1, [3]
(3) (n ) r 7o \j/)q[ i]", cf. 1], [3]

Now, we define the operator * on et by
(4) [(«) > =1(q)eW.

Hence, we have the following:
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Let 62(n,k :gq) = 0 ifk > n. Then we obtain the generating function of the g-Stirling
numbers of second kind as follows:

(5) *(e‘-)<M> = £ s 2(»,fc:g)7 <1
m n>k
For g = 1, note that
fm
e*- Ht= k'Y Si(nik)-p\" 1< 1’

n>k

where S”™n, k) is the second kind Stirling number .
Now, we assume g E Cp with |1 —q\p < p~p=T.

The g-analogue of Mahler expansion was defined by
m = S »), cf. p]
n>0 k 7q

where C(ZP,CP) denotes the set of continuous functions from Zp to Cp.

Moreover

©) (A")(©) =1T 7 (-L)ka™f(n - k), cf. [
fc=0 '

By (3),(6), note that
A gOn :q"~(-2)5 2(n,k:q).

Let
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By using (6), (7), it is easy to see that
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Hence, we have

(8) AT,ajjgS2(j,l : q).

3=0

Remark. By using (8), we easily see that
/ is analytic on Zp if and only if jAﬂLffO—)\p —>0, as n —00.
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