NNTDM 7 (2001), 3, 87-90

NOTES ON THE q-STIRLING NUMBERS OF SECOND KIND

TAEKYUN KIM, DAL-WON PARK AND YOUNG SOON RO

Institute of Science Education
Kongju National University, Kongju 314-701, S. Korea
Department of Mathematics Education
Kongju National University, Kongju 314-701, S. Korea

1. Introduction

Throughout this paper \mathbb{Z}_p , \mathbb{Q}_p , \mathbb{C} and \mathbb{C}_p will respectively denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex number field and the completion of the algebraic closure of \mathbb{Q}_p . Let v_p be the normalized exponential valuation of \mathbb{C}_p with $|p|_p = p^{-v_p(p)} = p^{-1}$. When one talks of q-extension, q is variously considered as an indeterminate, a complex number $q \in \mathbb{C}$, or a p-adic number $q \in \mathbb{C}_p$.

If $q \in \mathbb{C}$, one normally assumes |q| < 1. If $q \in \mathbb{C}_p$, then we assume $|q-1|_p < p^{-\frac{1}{p-1}}$, so that $q^x = \exp(x \log q)$ for $|x|_p \le 1$. We define the q-analogue of a positive integer n to be $[n] = [n:q] = \frac{q^n-1}{q-1}$. The q-binomial coefficient for nonnegative integers m and n with $m \ge n$ is

$$\binom{m}{n}_q = \frac{[m]!}{[n]![m-n]!} = \frac{(q^m-1)(q^{m-1}-1)\cdots(q^{m-n+1}-1)}{(q^n-1)(q^{n-1}-1)\cdots(q-1)},$$

where the q-factorials are $[n]! = [n] \cdot [n-1] \cdots [2][1]$, [0]! = 1 (see [3]). Define the nth q-power of a polynomial f(T) to be $f^{(0:q)} = 1$ and $f^{(n:q)}(T) = f(T)f(qT) \cdots f(q^{n-1}T)$

2000 Mathematics Subject Classification 11B68

Key words and phrases: q-Stirling numbers, Stirling number, binomial coefficients

Corresponding author: Taekyun Kim, e-mail: taekyun64@hotmail.com, (or tkim@kongju.ac.kr)

Typeset by AMS-TFX

for $n \geq 1$. Then the q-binomial theorem becomes

(1)
$$(1+T)^{(m:q)} = \sum_{k=0}^{m} {m \choose k}_q T^{(k:q)}.$$

Let (Eh)(x) = h(x+1) be the shift operator.

Then the q-difference operator is defined by

$$\Delta_q^n := (E - I)^{(n:q)} = \Delta^{(n:q)}.$$

The purpose of this note is to find the generating function of the q-Stirling numbers of second kind using the above q-difference operator. By using this generating function, we can give some formulae on q-Stirling numbers

2. q-analogue of Stirling numbers of second kind

For $q \in \mathbb{C}$ with |q| < 1, the q-Stirling numbers of second kind were defined by L. Carlitz as a numbers $S_2(n, k : q)$ such that

(2)
$$[x]^n = \sum_{k=0}^n q^{\binom{k}{2}} \binom{x}{k}_q [k]! S_2(n, k:q),$$

from which Carlitz found

(3)
$$S_2(n,k:q) = \frac{q^{-\binom{k}{2}}}{[k]!} \sum_{j=0}^k (-1)^j q^{\binom{j}{2}} \binom{k}{j}_q [k-j]^n, \quad \text{cf. [1], [3].}$$

Now, we define the operator * on e^t by

$$(4) f(q) * e^{xt} = f(q)e^{[x]t}.$$

Hence, we have the following:

$$\frac{q^{-\binom{k}{2}}}{[k]!} * (e^t - 1)^{(k:q)} = \frac{q^{-\binom{k}{2}}}{[k]!} * \sum_{0 \le j \le k} (-1)^{k-j} \binom{k}{j}_q q^{\binom{k-j}{2}} e^{jt}
= \frac{q^{-\binom{k}{2}}}{[k]!} \sum_{0 \le j \le k} (-1)^{k-j} \binom{k}{j}_q q^{\binom{k-j}{2}} \sum_{n=0}^{\infty} [j]^n \frac{t^n}{n!}
= \sum_{n \ge 0} S_2(n, k:q) \frac{t^n}{n!}, \quad |t| < 1.$$

Let $S_2(n, k : q) = 0$ if k > n. Then we obtain the generating function of the q-Stirling numbers of second kind as follows:

(5)
$$\frac{q^{-\binom{k}{2}}}{[k]!} * (e^t - 1)^{(k:q)} = \sum_{n \ge k} S_2(n, k:q) \frac{t^n}{n!}, |t| < 1.$$

For q = 1, note that

$$(e^t - 1)^k = k! \sum_{n \ge k} S_2(n, k) \frac{t^n}{k!}, |t| < 1,$$

where $S_2(n,k)$ is the second kind Stirling number.

Now, we assume $q \in \mathbb{C}_p$ with $|1 - q|_p < p^{-\frac{1}{p-1}}$.

The q-analogue of Mahler expansion was defined by

$$f(x) = \sum_{n>0} (\Delta_q^n f)(0) {x \choose n}_q \in C(\mathbb{Z}_p, \mathbb{C}_p), \text{ cf. } [2]$$

where $C(\mathbb{Z}_p, \mathbb{C}_p)$ denotes the set of continuous functions from \mathbb{Z}_p to \mathbb{C}_p .

Moreover

(6)
$$(\Delta_q^n f)(0) = \sum_{k=0}^n \binom{n}{k}_q (-1)^k q^{\binom{k}{2}} f(n-k), \quad \text{cf. [3]}.$$

By (3),(6), note that

$$\Delta_q^k 0^n = \frac{q^{-\binom{k}{2}}}{[k]!} S_2(n, k:q).$$

Let

(7)
$$f(x) = \sum_{j=0}^{\infty} a_{j,q}[x]^j, \quad a_{j,q} \in \mathbb{Q}_p.$$

By using (6), (7), it is easy to see that

$$(\Delta_{q}^{l}f)(0) = \sum_{m=0}^{l} (-1)^{l-m} \binom{l}{m}_{q} f(m) q^{\binom{l-m}{2}}$$

$$= \sum_{j=0}^{\infty} a_{j,q} \left(\sum_{m=0}^{l} (-1)^{l-m} \binom{l}{m}_{q} [m]^{j} q^{\binom{l-m}{2}} \right)$$

$$= \sum_{j=0}^{\infty} a_{j,q} q^{\binom{l}{2}} [l]! S_{2}(j,l:q).$$

Hence, we have

(8)
$$q^{-\binom{l}{2}} \frac{\Delta_q^l f(0)}{[l]!} = \sum_{j=0}^{\infty} a_{j,q} S_2(j,l:q).$$

Remark. By using (8), we easily see that

f is analytic on \mathbb{Z}_p if and only if $|\frac{\Delta_q^n f(0)}{[n]!}|_p \to 0$, as $n \to \infty$.

ACKNOWLEDGEMENTS: This work was supported by Korea Research Foundation Grant (KRF-99-005-D00026) and partially supported by Jangjeon Research Institute for Mathematical Science (JRIMS-01-002432).

REFERENCES

- [1] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15 (1948), 987-1000.
- [2] K. Conrad, A q-analogue of Mahler expansion, Adv. Math. 153 (2000), 185-230.
- [3] T. Kim and S.H.Rim, A note on q-integral and q-series, Advan. Stud. Contemp. Math. 2 (2000), 37-45.
- [4] T. Kim, Sums products of q-Bernoulli numbers, Arch. Math. 76 (2001), 190-195.
- [5] T. Kim et als, On multivariate p-adic q-integrals, J. Phys. A 34 (2001).
- [6] T. Kim, On p-adic q-L-functions and sums of powers, Discrete Math. (2001).
- [7] T. Kim, A note on p-adic q-Dedekind sums, Computes Rend. Acad. Bulga. Sci. (2001).
- [8] T. Kim, On explicit formulas of p-adic q-L-functions, Kyushu J. Math. 48 (1994), 73-86.
- [9] T. Kim, Multiple zeta values, Di zeta values and their application, Lecture Notes in Number Theory (Kyungnam Univ.). (1998), 31-95.