T. Kim, C.S. Ryoo, H. K. Pak and S.-H. Rim
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 7, 2001, Number 3, Pages 78–86
Full paper (PDF, 286 Kb)
Details
Authors and affiliations
T. Kim,
Institute of Science Education,
Kongju National University, Kongju 314-701, S. Korea
C.S. Ryoo
Deaprtment of Mathematics ,
Kyungpook University, Taegu 702-701, S. Korea
H. K. Pak
Department of Mathematics Kyungsan university,
Kyungsan, S. Korea
S.-H. Rim
Department of mathematics Education Kyungpook Unversity,
Taegu 702-701, S. Korea
Abstract
The purpose of this paper is to give an explicit p-adic expansion of such that the coefficients of the expansion are the values of an analogue of p-adic L-function associated with Euler numbers.
Keywords
- p-adic L-function
- Bernoulli numbers
- Dirichlet’s series
AMS Classification
- 11B68
- 11S80
References
- G.E. Andrews, q-analogs of the binomial coefficient congruences of Babbage, Wolstenholme and Glaisher, Discrete Math. 204 (1999), 15-25.
- T. Kim, On a q-analogue of p-adic log gamma functions and related integrals, J. Number Theory 78 (1999), 320-329.
- ______, A note on p-adic Carlitz’s q-Bernoulli numbers, Bulletin Austral. Math. 62 (2000), 227-234.
- ______, Sums products of q-Bemoulli numbers, Arch. Math. 76 no. 3 (2001), 190-195.
- ______, On p-adic q–L-functions and sums of powers, Discrete Math. (2001).
- ______, A note on p-adic q-Dedekind sums, Comptes Rendus de l’Academie Bulgare des Sciences 54 no. 10 (2001), 37-42.
- ______, Remark on p-adic q-Bernoulli numbers, Adv. Stud. Contemp. Math. (Kudeok Publ.) 1 (1999), 127-136.
- ______, Some q-Bemoulli numbers of higher order associated with the p-adic q-integrals, Indian J. Pure and Appl. Math. 32 no. 10 (2001), 1565-1570.
- ______, An analogue of Bernoulli numbers and their congruences, Rep. Fac. Sci. Engrg. Saga Univ. Math. 22 (1994), 7-13.
- L.C. Jang, T. Kim, D-H. Lee, D-W. Park, An application of polylogarithms in the analogs of Genocchi numbers. Notes on Number Theory and Discrete Mathematics, 7 no. 3 (2001), 65-69.
- L. C. Washington, p-adic L-functions and sums of powers, J. Number Theory 69 (1998), 50-61.
Related papers
Cite this paper
Kim, T. , Ryoo, C.S., Pak, H. K. & Rim, S.-H. (2001). A note on the analogs of p-adic L-functions and sums of powers. Notes on Number Theory and Discrete Mathematics, 7(3), 78-86.