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A b stra ct . The purpose of this paper is to  give an explicit p-adic expansion of XX j = i  j r  
such th a t the  coefficients of the expansion are the values of an analogue of p-adic L- 
function associated w ith Euler numbers.

1. I n t r o d u c t i o n

Throughout this paper Zp, Qp, C and Cp will respectively denote the ring of p-adic 
rational integers, the field of p-adic rational numbers, the complex number field and 
the completion of the algebraic closure of Qp. Let vp be the normalized exponential 
valuation of Cp with \p\p =  p~vv(r) = p-1 . When one talks of ^-extension, q is variously
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considered as an indeterminate, a complex number or a p-adic number q E Cp.
We use the notation:

(1) [x] = [x:q] =

Note that when p is prime [p] is an irreducible polynomial in Q(q). Furthermore, this 
means that Q{q)/\p] is a field and consequently rational functions r(q)/s(q) are well 
defined modulo \p] if (r(q),s(q)) = 1. Recently Andrews (see [1]) presented g-analogs 
of several classical binomial coefficient congruences due to Babbage, Wolstenholme 
and Glaisher. In [5], the first author has given an explicit formulas to generalize the 
theorem of Andrews. In [11], L.C. Washington has given an explicit p-adic expansion 
of E ”=i,(j,p)=i ;p 95 power series in n .

In this paper, we give an explicit p-adic expansion of X)”=i,(7',p)=i such that 
the coefficients of the expansion are the values of an analogue of p-adic L-function 
associated with Euler numbers by more or less the same method in [5]. In Section 2, 
we give the new identities for the analogs of Bernoulli numbers, which were studied by 
the first author in [9]. These identities will be used to give an explicit p-adic expansion
of E?=i,(i,P)=i fr  as power series in n.

2. On identities of the analogue of Bernoulli numbers

The Bernoulli numbers Bm are defined by means of the exponential generating 
function

(2)

It is easy to see that

l*l < i-

Bo =  1, B\ =  -1 /2 , £?2 =  1/6, and £ 2fc+i =  0 for k > 0.

For any positive integer N, po(« +  PN%p) = p r  can be extended to a distribution on 
Zp, cf. [2]. Let Tp — limn^oo Cpny where Cp» are denoted by cyclic group of order pn.

For n G N =  {1,2,3,*-*}, q(^  1) G Tp, we define the the analogue of Bernoulli 
numbers, j3m = /3m(q) as

(3) Pm =  [  qxxmdpo (x).
J "Zip
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Thus we have, cf. [9],

« ( £ + i ) k - p k =
if k =  1 
if k > 1,(4)

1
0

with the usual convention about replacing (3% by /%.

So, the analogue of Bernoulli numbers {3m are defined by means of the generating 
function Gq(t) as follows:

where t G Zp, <?(/ 1) 6 Tp.

The analogue of Bernoulli polynomials in the variable x  in Cp with \x\p < 1 were 
defined by

(6) Pnfaq) = [  q ^x  + t^dfioit), for q(^  1) 6 Tp, (see [2], [3], [9]).
JZP

It is easy to see in [9] that

(7) for 1) G Tp.

Let Gq(x, t) be the generating function of the analogue of Bernoulli polynomials in 
the variable x. By (7), (5), we see that

(8) Gq(x, t) = ext, for t G Zp, q{^  1) G Tp.
qe i

By (8), it is shown that

(9) dk~l ^ p k q%
i —0 '■

where d, k are positive integers.
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If we put x  =  0 in (9), then we have

m  / \ n —1

(10) npm = Y  ?  A t f V  Y  q3i
k= o  '  '  j = 0

By (10), we see

From now, we assume g G C with \q\ < 1, q /  1 and we try  to prove the ^-analogue
of (1) by using (9).

m —k

m — 1 n —1
(11) n/3m W =  E  ( T K & ( 4 " ) £ 9 h

fc=0 '  '  j= l

Define the operation * on /(g ) as follows:

(12) n ( l  -  »■) * /(? )  =  n /(« ) -  nm[n]/(9"). 

Thus (11) can be written using * as:

■m—k

(13)
m —1 / \ n —1

n ( l - n m)* A » (« )=  E  ( 7 ) ’>*A(4” ) E ' * m- fc

It was well known that, for positive integers s and n,

n —1 s —1

(14)
z=o j = o  w

,n s-J

Now, we would like to give the analogue of (14) which is used later. It is easy to see 
that

(15) Y  eV  =  where g e  C with |g| < 1 .^  £ ge* - 1z=o H

By (5), (8), (15), we have the following formula:

n —1

qnPm{n i q) ~  Pm — m  qllm 1.
1=0
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Hence, we can give the (/-analogue of (14) as follows:

71 — 1
(16) V j ' r - 1 = - Y , {  7 )  <3in’n" ‘ +  - ( « " -' m  z—' \ t / m

m — 1
m

l

1

«=o z=o

It can be defined by more or less the same method in [7], [10] that

(17)
fill

C7(s) =  y ~ 7 )  C?(s >a ) =  y (n +  a)s ’
n = l  n = 0

where a is a real number with 0 < a <  1, and q G C with |g| < 1, s G C. 

Note that

(18) C,( 1 - 0  =  - y ,  C , ( l - * ,o )  =  - ^ i

where A; is any positive integer. 

Let

(19)

nm 00 na+nF
j q(s, a, f ) =  y  —  =  y  y — —

n = 0  v 'm = a (mod F) 
m > 0

f  W _ < T _  =  f  ,  , 
2 ^  ( « + „ ) «  
n=0  '

-,nF

where a and F  are positive integers with 0 < a < F. 

Then

(20) J , ( l  - n ,
F n~1qal3„(§,qF)

n
n > 1,

and J„ has a simple pole at s =  1.

Let x  be the Dirichlet character with conductor F . Then we define the analogue of 
the Dirichlet L-series as follows: For s 6 C,

^ ( S>X) =  y  x O ) ^ 0 ,a ,F ) .
a =  1
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Now, we define the analogue of generalized Bernoulli numbers with x  as follows:

tqax(g)eat x ^ Pn,x in 
2 ^  q F e F t  _ 1 2 ^  n \ ’

where g ( /  1) E C with \q\ < 1.

Hence, we have

l q ( l - k , x )  =  f o r  k >  1 .

Remark. For q (^  1) E C with |g| < 1, it is easy to see that

—  - j _  — j;Hm(q 1), cf. [9], 

where H m{q~l ) are Euler numbers.

3. An Analogue of p-adic L-function

In this section, we assume q E Tp. Let p be an odd prime and let lp,q{s,x)  be the 
^-analogue of the p-adic L-function attached to a character x  which is defined late. We 
define < x  > = <  x  : q > =  where u>(x) is the Tcichmiiller character. When F  is a
multiple of p  and (a ,p ) =  1, we define a p-adic analogue of (19) as

(21) JP,q{ s ,a ,F ) =  <  a >X~S £  ( X j  S)  ( “ )  P M F),

for s E Zp.

It is easy to see in (7), (20), (21) that

• W 1 - " • “ • U  =  -~j< a > n ' 2  ( " ) & ( « " )  ( £ )

(22) = ( | ) ”"J

n  r
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for all positive integers n and it has a simple pole at s = 1.

It is easy to see from [3], (21), (20) that

F

(23) lptq(s,x)  =  ^   ̂X(a)Jp,q{Si ai F)-
a= 1 
p\a

For /  E N, let x  be the Dirichlet character with conductor / .  The analogue of general­
ized Bernoulli numbers with character y, which were defined in Section 2, is associated 
with an invariant p-adic integral as follows:

(24) Pk,x (q) = f  x { x ) ( f x k d m s ( x ) , cf. [9],
J  i P

where A: is a positive integer, q (^  1) £ Tp.

We see in (24) that

/

(25) Pk,x (<i) = f k~l ^ 2  x(a)qaPk
a=  1

By (22), (23), (25), if n  >  1 then we have

F

(26)
V<?(1 n ,x )  = -  n, a, F)

a = l
p\a

=  - - ( P n , Xu - n (<l) ~ P U XX“ n(p )P n ,x^n((lP))-Th

In fact, we have the formula

(27) lp,q(s i X) ~
1 1

F s - 1

F

a— 1
pfa

a > 1 —s

for s £  Zp.

This is a p-adic analytic function (except possibly at s =  1) and has the following 
properties of (28)-(31) for y  =  u / in [7], [9] by more or less the same method:

(28) lp,q(l  -  k , u l) = - ^ { P k  - P fe_1/3fc(/)),
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where 1 < k =  t (mod p — 1),

(29) Zp>g(s,cZ) G Zp for all s € Zp when £ ^  0 (mod p — 1). 

If t ^  0 (mod p — 1), then

(30) ZP)(?(s i ,a /)  =  /p,g(s2, ^ )  (mod p) for all s i , s 2 <E Zp. 

lp,q (s ,  1) has a simple pole at s — 1 with residue 0,

(31) lPiq( k ,Y )  =  lp,q(k + p ,u t ) (mod p).

It was known in [4], [9] that

(32)
r \  / I  — r — k \  —1 (

r +  k — 1 V k
k + j \

3 j  +  k \ k  +  j  — l )  V j  )

for all positive integers r ,j ,  k with j , k > 0, j  + k > 0, and 

Thus we can obtain the following: For r  >  1,

(33)

E ( l  y - ’- k (a)qnJp,q(r + k ,a ,F ) (F n ) l‘
k = 1

= -E
n ~ l  q F l + a F Y - W  - r  \ p s(qF)

1=0
(FI +  a)r ( E i J

S = 1  N 7 v 7

For F  =  p, r e  N, we see that

(34)

We set

(35)

P - l n - l  + t  np
s r '  y -  <1 __ y -  <r_

Z ^  t  4- n /y  _  Z-^ i‘r '
a = l (a + piy

j= M j> p)=1
J 1

B M ( a , f ) = £ 9° a - T ^ )
S=1 ' '

3 —  1
■ ^  P s ( q F )

V *
By (33), (34), (35), we have 
(36)
npn P j  oo ✓ \ P ~  1

E‘ ̂  = “ E 7) «”&>»)* W' + K ^ k~r) -  (<T-  1)E
j=i J k = Y K '  0=1
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