H.-S. Cho and E.-S. Kim
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 7, 2001, Number 3, Pages 70–77
Full paper (PDF, 216 Kb)
Details
Authors and affiliations
H.-S. Cho
Department of Mathematics, College of National Sciences,
Kyung- pook National University, Taegu 702-701, Korea
E.-S. Kim
Department of Mathematics, College of National Sciences,
Kyung- pook National University, Taegu 702-701, Korea
Abstract
In this paper, we treat the some formulas to be related an invariant p-adic integral on Zp. As an application of an invariant p-adic integral on Zp, we give the formulas for sums of products of the analogue of Bernoulli numbers to be defined by an invariant p-adic integral on Zp.
AMS Classification
- 03B52
- 03E72
- 94D05
References
- K.Dilcher, Sums of products of Bernoulli numbers,J. Number Theory 60(1) (1996), 23-41.
- I.C.Huang, Bernoulli numbers and polynomials via residue, J. Number Theory 76 (1999), 178-193.
- T.Kim, An analogue of Bernoulli numbers and their congruences, Rep. Fac. Sci. Engrg. Saga Univ. Math. 22 (1994), 21-26.
- T.Kim, On explicit formulars of p-adic q-L-functions,Kyushu J. Math. 48(1994), 73-86.
- T.Kim, Sums of products of q-Bernoulli numbers,Arch.Math.76(2001), 190- 195.
- T.Kim, An invariant p-adic integral associated with Daehee numbers, to appear in Integral Trans. Special Function (2001-2002).
- T.Kim, Notes on multivariate p-adic q-integral (preprint).
- T.Kim, On p-adic q – L-functions and sums of powers,to appear in Discrete Math.
- G.J.Murphy, Translation-invariant. Function Algebras on compact groups, (to appear) in Advanced Stud. Contcmp. Math. Vol. 3 No. 2 (2001).
- K.Sliiratani, On a p-adic interpolating function for the Euler number and it’s derivatives, Mem. Fac. Sci. Kyushu. Univ. Math. 39 (1985), 113-125.
- H.M.Srivastava, An explicit formula for the generalized Bernoulli polynomials, J. Math. Analysis and Application 130 (1988), 509-513.
Related papers
Cite this paper
Cho, H.-S. & Kim, E.-S. (2001). Transformation-invariant p-adic integral on Zp. Notes on Number Theory and Discrete Mathematics, 7(3), 70-77.