Connections in mathematics: Fibonacci sequence via arithmetic progression

K. Atanassov
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 6, 2000, Number 2, Pages 61–63
Full paper (PDF, 84 Kb)

Details

Authors and affiliations

K. Atanassov
Centre for Biomedical Engineering – Bulgarian Academy of Sciences,
Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria

References

  1. Marchisotto E., Connections in mathematics: as introduction to Fibonacci via Pythagoras. The Fibonacci Quarterly, Vol. 31 (1993), No. 1, 21-27.
  2. Vorob’ev N. Fibonacci numbers, Pergamon Press, London, 1961.
  3. Atanassov K., Atanassov L., Sasselov D. A new perspective to the generalization of the Fibonacci sequence, The Fibonacci Quarterly Vol. 23 (1985), No. 1, 21-28.
  4. Atanassov K., On a second new generalization of the Fibonacci sequence. The Fibonacci Quarterly Vol. 24 (1986), No. 4, 362-365.
  5. Lee J.-Z., Lee J.-S., Some properties of the generalization of the Fibonacci sequence. The
    Fibonacci Quarterly, Vol. 25 (1987), No. 2, 111-117.
  6. Spickerman W., Joyner R., Creech R., On the (2, F) generalizations of the Fibonacci sequence, The Fibonacci Quarterly, Vol. 30 (1992), No. 4, 310-314.

Related papers

Cite this paper

Atanassov, K. (2000). Connections in mathematics: Fibonacci sequence via arithmetic progression. Notes on Number Theory and Discrete Mathematics, 6(2), 61-63.

Comments are closed.