B. Feng and J. Wu
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 31, 2025, Number 4, Pages 916–923
DOI: 10.7546/nntdm.2025.31.4.916-923
Full paper (PDF, 224 Kb)
Details
Authors and affiliations
B. Feng ![]()
School of Mathematics and Big Data, Chongqing University of Education
Chongqing 400065, P. R. China
J. Wu
![]()
CNRS
Université Paris-Est Créteil
Université Gustave Eiffel
LAMA 8050
F-94010 Créteil, France
Abstract
Let
(respectively,
) be the number of divisors (respectively, square free divisors) of natural number
, and let
be the integral part of real number
.
In this short note, we prove that for any
the asymptotic formula
![]()
holds for
, where
or
and
![Rendered by QuickLaTeX.com \[\Xi_{g, c} := \sum_{d=1}^{\infty} g(d)\bigg(\frac{1}{d^{1/c}} - \frac{1}{(d+1)^{1/c}}\bigg), \quad \theta_c^{\rm FW} := \begin{cases} \frac{2}{3c+2}, & \text{if $0<c\le \frac{2}{5}$}, \\\noalign{\vskip 1mm} \frac{5}{5c+6}, & \text{if $c\ge \frac{2}{5}$}\cdot \end{cases}\]](https://nntdm.net/wp-content/ql-cache/quicklatex.com-37c3e2b92921e5ebc315d102533f61c4_l3.png)
This improves and generalises the corresponding results of Feng–Wu for
and of Zhang for
with
, respectively.
Keywords
- Exponential sums
- Square free integers
- Asymptotic results on arithmetic functions
2020 Mathematics Subject Classification
- 11L07
- 11N25
- 11N37
References
- Bordellès, O. (2022). On certain sums of number theory. International Journal of Number Theory, 18(9), 2053–2074.
- Bordelles, O., Dai, L., Heyman, R., Pan, H., & Shparlinski, I. E. (2019). On a sum involving the Euler function. Journal of Number Theory, 202, 278–297.
- Feng, Y.-F. (2024). On a sum involving divisor function and the integral part function. Indian Journal of Pure and Applied Mathematics. Published online at: https://doi.org/10.1007/s13226-024-00724-y .
- Graham, S. W., & Kolesnik, G. (1991). Van der Corput’s Method of Exponential Sums. Cambridge University Press, Cambridge.
- Jutila, M. (1987). Lectures on a Method in the Theory of Exponential Sums. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, Vol. 80, Springer-Verlag.
- Liu, K., Wu, J., & Yang, Z.-S. (2022). A variant of the prime number theorem. Indagationes Mathematicae, 33(2), 388–396.
- Liu, K., Wu, J., & Yang, Z.-S. (2024). On some sums involving the integral part function. International Journal of Number Theory, 20(3), 831–847.
- Ma, J., & Sun, H.-Y. (2021). On a sum involving the divisor function. Periodica
Mathematica Hungarica, 83(2), 185–191. - Ma, J., & Wu, J. (2021). On a sum involving the von Mangoldt function. Periodica Mathematica Hungarica, 83(1), 39–48.
- Stucky, J. (2022). The fractional sum of small arithmetic functions. Journal of Number Theory, 238, 731–739.
- Wu, J. (2020). Note on a paper by Bordelles, Dai, Heyman, Pan and Shparlinski. Periodica Mathematica Hungarica, 80(1), 95–102.
- Wu, L. (2025). Note on a sum involving the divisor function. Indagationes Mathematicae, 36(5), 1453–1458.
- Zhai, W.-G. (2020). On a sum involving the Euler function. Journal of Number Theory, 211, 199–219.
- Zhang, W. (2024). On a variant of the prime number theorem. Journal of Number Theory, 257, 163–185.
Manuscript history
- Received: 21 August 2025
- Revised: 5 December 2025
- Accepted: 8 December 2025
- Online First: 10 December 2025
Copyright information
Ⓒ 2025 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
Cite this paper
Feng, B., & Wu, J. (2025). Divisors and square-free divisors involving the floor function. Notes on Number Theory and Discrete Mathematics, 31(4), 916-923, DOI: 10.7546/nntdm.2025.31.4.916-923.
