Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 2025, Volume 31, Number 4, 916–923

DOI: 10.7546/nntdm.2025.31.4.916-923

Divisors and square-free divisors involving the floor function

B. Feng and J. Wu²

¹ School of Mathematics and Big Data, Chongqing University of Education Chongqing 400065, P. R. China

e-mail: binfengcq@163.com

² CNRS

Université Paris-Est Créteil Université Gustave Eiffel LAMA 8050 F-94010 Créteil, France

e-mail: jie.wu@u-pec.fr

Received: 21 August 2025 **Accepted:** 8 December 2025 **Online First:** 10 December 2025

Abstract: Let $\tau(n)$ (respectively, $\tau_{\sharp}(n)$) be the number of divisors (respectively, square free divisors) of natural number n, and let [t] be the integral part of real number t. In this short note, we prove that for any $\varepsilon > 0$ the asymptotic formula

$$\sum_{n < x^{1/c}} g\left(\left[\frac{x}{n^c}\right]\right) = \Xi_{g,c} x^{1/c} + O_{\varepsilon}(x^{\theta_c^{\text{FW}} + \varepsilon})$$

holds for $x \to \infty$, where $g = \tau$ or τ_{\sharp} and

$$\Xi_{g,c} := \sum_{d=1}^{\infty} g(d) \left(\frac{1}{d^{1/c}} - \frac{1}{(d+1)^{1/c}} \right), \qquad \theta_c^{\text{FW}} := \begin{cases} \frac{2}{3c+2}, & \text{if } 0 < c \leq \frac{2}{5}, \\ \frac{5}{5c+6}, & \text{if } c \geq \frac{2}{5}. \end{cases}$$

This improves and generalises the corresponding results of Feng–Wu for $\tau(n)$ and of Zhang for $\tau_{\rm f}(n)$ with c=1, respectively.

Copyright © 2025 by the Authors. This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

Keywords: Exponential sums, Square free integers, Asymptotic results on arithmetic functions. **2020 Mathematics Subject Classification:** 11L07, 11N25, 11N37.

1 Introduction

As usual, denote by $\tau(n)$ the classic divisor function and by [t] the integral part of $t \in \mathbf{R}$. The well-known divisor problem of Dirichlet states as follows

$$\sum_{n \le x} \tau(n) = \sum_{n \le x} \left[\frac{x}{n} \right] = x \log x + (2\gamma - 1)x + O(x^{1/3}) \quad (x \to \infty),$$

where γ is the Euler constant. In [2], Bordellès, Dai, Heyman, Pan and Shparlinski considered a more general function of summation:

$$S_f(x) := \sum_{n \le x} f\left(\left[\frac{x}{n}\right]\right),$$

by establishing its asymptotic formula under some simple assumptions of f. Subsequently, Wu [11] and Zhai [13] improved their results independently. In particular, if $f(n) \ll_{\varepsilon} n^{\varepsilon}$ for any $\varepsilon > 0$ and all $n \geq 1$, then [11, Theorem 1.2(i)] or [13, Theorem 1] yields the following asymptotic formula

$$S_f(x) = \left(\sum_{d=1}^{\infty} \frac{f(d)}{d(d+1)}\right) x + O_{\varepsilon}(x^{1/2+\varepsilon})$$
(1)

as $x \to \infty$. Many authors are interested in breaking the $\frac{1}{2}$ -barrier for the error term of (1) for some classical arithmetic functions [1, 6, 8–10, 14]. In particular, Ma and Sun [8] showed that

$$S_{\tau}(x) = \left(\sum_{d=1}^{\infty} \frac{\tau(d)}{d(d+1)}\right) x + O_{\varepsilon}(x^{11/23+\varepsilon}) \qquad (x \to \infty).$$
 (2)

Subsequently, the exponent $\frac{11}{23}$ has been improved to $\frac{19}{40}$ by Bordellès [1] and to $\frac{9}{19}$ by Liu, Wu and Yang [6]. Finally Stucky [10] observed that the bound for exponential sum with the coefficients $\tau(n)$ of Jutila [5] (see also Lemma 2.2 below) allows to obtain a better exponent $\frac{5}{11}$.

Recently Feng [3] investigated a more general problem than (2):

$$S_{\tau,c}(x) := \sum_{n \le x^{1/c}} \tau\left(\left[\frac{x}{n^c}\right]\right) = \Xi_{\tau,c} x^{1/c} + O(x^{\theta_c^F + \varepsilon}),$$

where c > 0 is a fixed real number,

$$\Xi_{\tau,c} := \sum_{d=1}^{\infty} \tau(d) \left(\frac{1}{d^{1/c}} - \frac{1}{(d+1)^{1/c}} \right)$$

and

$$\theta_c^{\mathrm{F}} := \begin{cases} \frac{2}{3c+2}, & \text{if } 0 < c < \frac{2}{11}, \\ \frac{11}{11c+12}, & \text{if } c \ge \frac{2}{11}. \end{cases}$$
 (3)

Following Stucky's idea [10], Wu [12] applied Jutila's bound for exponential sum mentioned above to get a better error term

$$\theta_c^{\text{FW}} := \begin{cases} \frac{2c+2}{(2c+1)(c+2)}, & \text{if } 0 < c \le \frac{2}{3}, \\ \frac{5}{5c+6}, & \text{if } c \ge \frac{2}{3}. \end{cases}$$
(4)

This gives an improvement of (3) for $c > \frac{2}{9}$. Noticing that $\theta_1^{\text{FW}} = \frac{5}{11}$, Wu's (4) generalises the work of Stucky [10].

The first aim of this short note is to propose better exponent than (3) and (4).

Theorem 1.1. For any $\varepsilon > 0$ and $x \to \infty$, we have

$$S_{\tau,c}(x) = \Xi_{\tau,c} x^{1/c} + O(x^{\theta_c^{\text{FW}} + \varepsilon}), \tag{5}$$

where

$$\theta_c^{\text{FW}} := \begin{cases} \frac{2}{3c+2}, & \text{if } 0 < c \le \frac{2}{5}, \\ \frac{5}{5c+6}, & \text{if } c \ge \frac{2}{5}. \end{cases}$$
 (6)

Note that

$$c > 0 \implies \frac{2}{3c+2} < \frac{2c+2}{(2c+1)(c+2)}$$
 and $0 < c < \frac{2}{3} \implies \frac{5}{5c+6} < \frac{2c+2}{(2c+1)(c+2)}$

Theorem 1.1 improves Feng's (3) and Wu's (4) for $\frac{2}{11} < c < \frac{2}{3}$.

Denote by $\tau_{\sharp}(n)$ the number of square free divisors of n. In [1], Bordèlles proved the following asymptotic formula

$$S_{\tau_{\sharp}}(x) := \sum_{n < x} \tau_{\sharp} \left(\left[\frac{x}{n} \right] \right) = \left(\sum_{d=1}^{\infty} \frac{\tau_{\sharp}(d)}{d(d+1)} \right) x + O_{\varepsilon}(x^{97/203 + \varepsilon}).$$

Subsequently the exponent $\frac{97}{203} \approx 0.47783$ has been reduced to $\frac{9}{19} \approx 0.47368$ by Liu–Wu–Yang [7] and $\frac{107}{229} \approx 0.46724$ by Zhang [14]. The second aim of this short note is to consider a more general sum

$$S_{\tau_{\sharp},c}(x) := \sum_{n \le x^{1/c}} \tau_{\sharp} \left(\left[\frac{x}{n^c} \right] \right).$$

Our result is as follows.

Theorem 1.2. For any $\varepsilon > 0$ and $x \to \infty$, we have

$$S_{\tau_{\sharp},c}(x) = \Xi_{\tau_{\sharp},c} x^{1/c} + O_{c,\varepsilon}(x^{\theta_c^{\mathrm{FW}} + \varepsilon}), \tag{7}$$

where θ_c^{FW} is given by (6) and

$$\Xi_{\tau_{\sharp},c} := \sum_{d=1}^{\infty} \tau_{\sharp}(d) \left(\frac{1}{d^{1/c}} - \frac{1}{(d+1)^{1/c}} \right). \tag{8}$$

Noticing that $\theta_1^{\rm FW}=\frac{5}{11}\approx 0.45454$, a special case of Theorem 1.2 with c=1 improves Zhang's exponent $\frac{107}{229}\approx 0.46724$. It is worth noticing that

$$\lim_{c \to 0^+} \frac{\theta_c^{\text{FW}}}{(1/c)} = \lim_{c \to 0^+} \frac{2c}{3c+2} = 0.$$

This means that the error term is very small with respect to the main term when c is small. Such a situation is rather rare in the analytic number theory. Maybe it should be an interesting aspect of $S_{\tau,c}(x)$ and $S_{\tau_{\rm H},c}(x)$.

2 Bilinear forms

The aim of this section is to establish good bound for the bilinear forms

$$\mathfrak{S}_{c,\delta}^{g}(x,D) := \sum_{D < d < 2D} g(d)\psi\left(\frac{x^{1/c}}{(d+\delta)^{1/c}}\right),\tag{9}$$

where $g = \tau$ or τ_{\sharp} and $\psi(t) := t - [t] - \frac{1}{2}$. For this, we need two preliminary lemmas. The first one is [4, Theorem A.6].

Lemma 2.1. For $x \ge 1$ and $H \ge 1$, we have

$$\psi(x) = -\sum_{1 < |h| < H} \Phi\left(\frac{h}{H+1}\right) \frac{e(hx)}{2\pi i h} + R_H(x), \tag{10}$$

where $e(t) := e^{2\pi i t}$, $\Phi(t) := \pi t (1 - |t|) \cot(\pi t) + |t|$ and the second term $R_H(x)$ satisfies

$$|R_H(x)| \le \frac{1}{2H+2} \sum_{0 \le |h| \le H} \left(1 - \frac{|h|}{H+1}\right) e(hx).$$
 (11)

The second one is due to Jutila [5, Theorem 4.6].

Lemma 2.2. Let $D \ge 2$ and $D < D' \le 2D$. Let f be a holomorphic function in the domain

$$\mathcal{D} := \{ z : |z - x| < \eta D \text{ for some } x \in [D, D'] \},$$

where $\eta > 0$ is a positive constant. Suppose that f(x) is real for $D \le x \le D'$ and that

$$f(z) = Bz^{\alpha} \{ 1 + O(F^{-1/3}) \}$$
 $(z \in \mathcal{D}),$

where $\alpha \neq 0, 1$ is a fixed real number and $F = |B|D^{\alpha}$. Suppose that

$$D^{3/4} \ll F \ll D^{3/2}. (12)$$

Then for any $\varepsilon > 0$, we have

$$\sum_{D < d \le D'} \tau(d) e(f(d)) \ll F^{1/3 + \varepsilon} D^{1/2}. \tag{13}$$

The following proposition gives the desired bound for $\mathfrak{S}^g_{c,\delta}(x,D)$. It will play a key role in the proof of Theorems 1.1 and 1.2.

Theorem 2.1. Let $g = \tau$ or τ_{t} . For any $\varepsilon > 0$, we have

$$\mathfrak{S}^{g}_{c\,\delta}(x,D) \ll_{\varepsilon} (x^{2}D^{5c-2})^{1/8c}x^{\varepsilon} \tag{14}$$

uniformly for $x^{2/(3c+2)} \leq D \leq x^{4/(3c+4)}$ and $0 \leq \delta \leq \varepsilon^{-1}$.

Proof. First consider the case of $g = \tau$. Applying (10) and (11), for $H \ge 1$ we have

$$\mathfrak{S}^{\tau}_{c,\delta}(x,D) \ll \left\{ \frac{D}{H} + \sum_{h \leq H} \frac{1}{h} \left| \sum_{D \leq d \leq 2D} \tau(d) \mathbf{e} \left(\frac{x^{1/c}h}{(d+\delta)^{1/c}} \right) \right| \right\} x^{\varepsilon}. \tag{15}$$

We would like to use Lemma 2.2 to bound the last sum over d. Clearly we can write

$$f(z) = \frac{x^{1/c}h}{(z+\delta)^{1/c}} = x^{1/c}hz^{-1/c}\{1 + O(D^{-1})\}.$$

Thus we have $\alpha = -1/c$, $B = x^{1/c}h$ and $F = x^{1/c}hD^{-1/c}$. Under the condition

$$(x^{-4}D^{3c+4})^{1/4c} \ll h \ll (x^{-2}D^{3c+2})^{1/2c},\tag{16}$$

the assumption (12) of Lemma 2.2 is satisfied and $D^{-1} \leq F^{-1/3}$. Thus using this lemma, we have

$$\sum_{d \sim D} \tau(d) e\left(\frac{x^{1/c}h}{(d+\delta)^{1/c}}\right) \ll (x^2 D^{3c-2})^{1/6c} h^{1/3} x^{\varepsilon}.$$
(17)

Since $1 \le h \le H$, the condition (16) is satisfied provided

$$x^{2/(3c+2)} \le D \le x^{4/(3c+4)}$$
 and $1 \le H \le (x^{-2}D^{3c+2})^{1/2c}$. (18)

Assuming (18), we can insert (17) into (15) to get

$$\mathfrak{S}_{c\,\delta}^{\tau}(x,D) \ll (DH^{-1} + (x^2D^{3c-2})^{1/6c}H^{1/3})x^{\varepsilon}.$$
 (19)

Taking $H = (x^{-2}D^{3c+2})^{1/8c} \in [1, (x^{-2}D^{3c+2})^{1/2c}]$, we obtain the inequality (14) for $g = \tau$.

Next consider the case of $g = \tau_{\sharp}$. Let $\mu(n)$ be the Möbius function and

$$\tilde{\mu}(d) := egin{cases} \mu(m), & \text{if } d = m^2, \\ 0, & \text{otherwise.} \end{cases}$$

In view of the relation $\tau_{\sharp}=\tau*\tilde{\mu}$, we can write $\mathfrak{S}^{\tau_{\sharp}}_{c,\delta}(x,D)$ as follows

$$\mathfrak{S}_{c,\delta}^{\tau_{\sharp}}(x,D) = \sum_{D < m^{2}n \leq 2D} \mu(m)\tau(n)\psi\left(\frac{x^{1/c}}{(m^{2}n+\delta)^{1/c}}\right)$$

$$= \sum_{m \leq (2D)^{1/2}} \mu(m) \sum_{D/m^{2} < n \leq 2D/m^{2}} \tau(n)\psi\left(\frac{(x/m^{2})^{1/c}}{(n+\delta/m^{2})^{1/c}}\right)$$

$$= \sum_{m \leq (2D)^{1/2}} \mu(m)\mathfrak{S}_{c,\delta/m^{2}}^{\tau}(x/m^{2},D/m^{2}).$$
(20)

In order to prove (14) for $g = \tau_{\sharp}$, we divide the last sum of (20) into two parts:

$$m \le (x^{-2}D^{3c+2})^{1/6c}$$
 or $(x^{-2}D^{3c+2})^{1/6c} \le m \le 2D^{1/2}$.

In the first case, we have $(x/m^2)^{2/(3c+2)} \le D/m^2 \le (x/m^2)^{4/(3c+4)}$. Thus we can use (14) with $g = \tau$ to derive that the contribution of $m \le (x^{-2}D^{3c+2})^{1/6c}$ is

$$\ll \sum_{m \le (x^{-2}D^{3c+2})^{1/6c}} ((x/m^2)^2 (D/m^2)^{5c-2})^{1/8c} x^{\varepsilon}
\ll \sum_{m \le (x^{-2}D^{3c+2})^{1/6c}} (x^2 D^{5c-2} m^{-10c})^{1/8c} x^{\varepsilon}
\ll (x^2 D^{5c-2})^{1/8c} x^{\varepsilon}.$$

Trivially, the contribution of $(x^{-2}D^{3c+2})^{1/6c} \le m \le (2D)^{1/2}$ is

$$\ll \sum_{m \ge (x^{-2}D^{3c+2})^{1/6c}} Dm^{-2} x^{\varepsilon} \ll (x^2D^{3c-2})^{1/6c} x^{\varepsilon} \ll (x^2D^{5c-2})^{1/8c} x^{\varepsilon},$$

since $(x^2D^{3c-2})^{1/6c} \le (x^2D^{5c-2})^{1/8c}$ for $D \ge x^{2/(3c+2)}$. Inserting these into (20), we obtain the inequality (14) for $g = \tau_{\sharp}$.

3 Proof of Theorems 1.1 and 1.2

Let $N \in [1, x^{1/(c+1)}]$ be a parameter to be chosen later and $g = \tau$ or τ_{\sharp} . First we write

$$\sum_{n \le x^{1/c}} g\left(\left[\frac{x}{n^c}\right]\right) = \tilde{S}_{g,c}(x) + O(Nx^{\varepsilon}),\tag{21}$$

where

$$\tilde{S}_{g,c}(x) := \sum_{N < n \le x^{1/c}} g\left(\left[\frac{x}{n^c}\right]\right).$$

Noticing that $x/n^c-1 < d = [x/n^c] \le x/n^c \Leftrightarrow (x/(d+1))^{1/c} < n \le (x/d)^{1/c}$, we can derive that

$$\tilde{S}_{g,c}(x) = \sum_{d \le x/N^c} g(d) \sum_{(x/(d+1))^{1/c} < n \le (x/d)^{1/c}} 1$$

$$= \sum_{d \le x/N^c} g(d) \left(\frac{x^{1/c}}{d^{1/c}} - \psi \left(\frac{x^{1/c}}{d^{1/c}} \right) - \frac{x^{1/c}}{(d+1)^{1/c}} + \psi \left(\frac{x^{1/c}}{(d+1)^{1/c}} \right) \right) \qquad (22)$$

$$= \Xi_{g,c} x - \mathcal{R}_{c,0}^g(x,N) + \mathcal{R}_{c,1}^g(x,N) + O(Nx^{\varepsilon}),$$

where we have used the following bounds

$$x^{1/c} \sum_{d > x/N^c} g(d) \left(\frac{1}{d^{1/c}} - \frac{1}{(d+1)^{1/c}} \right) \ll Nx^{\varepsilon},$$
$$\sum_{d \leq N} g(d) \left(\psi \left(\frac{x^{1/c}}{d^{1/c}} \right) - \psi \left(\frac{x^{1/c}}{(d+1)^{1/c}} \right) \right) \ll Nx^{\varepsilon},$$

and the notation

$$\mathcal{R}_{c,\delta}^{g,*}(x,N) := \sum_{N < d \le x/N^c} g(d)\psi\left(\frac{x^{1/c}}{(d+\delta)^{1/c}}\right).$$

When $c \geq \frac{2}{5}$, we take $N = x^{5/(5c+6)}$. In this case, it is easy to check that

$$\frac{5}{5c+6} \ge \frac{2}{3c+2}$$
 and $1 - \frac{5c}{5c+6} = \frac{6}{5c+6} \le \frac{4}{3c+4}$ (23)

Thus for $c \geq \frac{2}{5}$, we can apply Theorem 2.1 to derive that

$$\mathcal{R}_{c,\delta}^{g,*}(x, x^{5/(5c+6)}) \ll x^{\varepsilon} \max_{N < D \le x/N^{c}} |\mathfrak{S}_{c,\delta}^{g}(x, D)|
\ll (x^{2}(xN^{-c})^{5c-2})^{1/8c} x^{\varepsilon}
\ll x^{5/(5c+6)+\varepsilon}.$$
(24)

If $0 < c < \frac{2}{5}$, we take $N = x^{2/(3c+2)}$. It is easy to check that

$$1 - \frac{2c}{3c+2} = \frac{c+2}{3c+2} \le \frac{4}{3c+4} \iff c \le \frac{2}{3}.$$
 (25)

Thus for $c<\frac{2}{5}$, we can apply Theorem 2.1 to derive that

$$\mathcal{R}^{g,*}_{c,\delta}(x, x^{2/(3c+2)}) \ll x^{\varepsilon} \max_{N < D \le x/N^{c}} \left| \mathfrak{S}^{g}_{c,\delta}(x, D) \right|$$

$$\ll \left((x^{2} N^{5c-2})^{1/8c} + (x^{2} N^{-c-2})^{1/2c} \right) x^{\varepsilon}$$

$$\ll x^{2/(3c+2)+\varepsilon}.$$
(26)

Now the required results (5) and (7) follow from (21), (22), (24) and (26). \Box

Acknowledgements

The first author was supported by the Chongqing University of Education Scientific Research Foundation for High-Level Talents (Grant agreement No. 235032).

References

- [1] Bordellès, O. (2022). On certain sums of number theory. *International Journal of Number Theory*, 18(9), 2053–2074.
- [2] Bordellès, O., Dai, L., Heyman, R., Pan, H., & Shparlinski, I. E. (2019). On a sum involving the Euler function. *Journal of Number Theory*, 202, 278–297.
- [3] Feng, Y.-F. (2024). On a sum involving divisor function and the integral part function. *Indian Journal of Pure and Applied Mathematics*. Published online at: https://doi.org/10.1007/s13226-024-00724-y.
- [4] Graham, S. W., & Kolesnik, G. (1991). *Van der Corput's Method of Exponential Sums*. Cambridge University Press, Cambridge.

- [5] Jutila, M. (1987). *Lectures on a method in the theory of exponential sums*. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, Vol. 80, Springer-Verlag.
- [6] Liu, K., Wu, J., & Yang, Z.-S. (2022). A variant of the prime number theorem. *Indagationes Mathematicae*, 33(2), 388–396.
- [7] Liu, K., Wu, J., & Yang, Z.-S. (2024). On some sums involving the integral part function. *International Journal of Number Theory*, 20(3), 831–847.
- [8] Ma, J., & Sun, H.-Y. (2021). On a sum involving the divisor function. *Periodica Mathematica Hungarica*, 83(2), 185–191.
- [9] Ma, J., & Wu, J. (2021). On a sum involving the von Mangoldt function. *Periodica Mathematica Hungarica*, 83(1), 39–48.
- [10] Stucky, J. (2022). The fractional sum of small arithmetic functions. *Journal of Number Theory*, 238, 731–739.
- [11] Wu, J. (2020). Note on a paper by Bordellès, Dai, Heyman, Pan and Shparlinski. *Periodica Mathematica Hungarica*, 80(1), 95–102.
- [12] Wu, L. (2025). Note on a sum involving the divisor function. *Indagationes Mathematicae*, 36(5), 1453–1458.
- [13] Zhai, W.-G. (2020). On a sum involving the Euler function. *Journal of Number Theory*, 211, 199–219.
- [14] Zhang, W. (2024). On a variant of the prime number theorem. *Journal of Number Theory*, 257, 163–185.