**A. D. Godase**

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 30, 2024, Number 1, Pages 100–110

DOI: 10.7546/nntdm.2024.30.1.100-110

**Full paper (PDF, 218 Kb)**

## Details

### Authors and affiliations

A. D. Godase

*Department of Mathematics, V. P. College Vaijapur
Aurangabad (MS), India*

### Abstract

The aim of this paper is to establish some novel identities for hyperbolic *k*-Fibonacci octonions and *k*-Lucas octonions. We prove these properties using the identities of *k*-Fibonacci and *k*-Lucas numbers, which we determined previously.

### Keywords

- Fibonacci number
- Lucas number
*k*-Fibonacci number*k*-Lucas number

### 2020 Mathematics Subject Classification

- Primary: 11B39
- Secondary: 11B37, 11B52

### References

- Bolat, C., & Köse, H. (2010). On the properties of
*k*-Fibonacci numbers.*International Journal of Contemporary Mathematical Sciences*, 5(22), 1097–1105. - Cariow, A., Cariowa, G., & Knapinski, J. (2015). A unified approach for

developing rationalized algorithms for hypercomplex number multiplication.*Przeglad Elektrotechniczny*, 91(2), 36–39. - Cariow, A., Cariowa, G., & Knapinski, J. (2015).
*Derivation of a low multiplicative**complexity algorithm for multiplying hyperbolic octonions*. Preprint. ArXiv:1502.06250. - Carmody, K. (1988). Circular and hyperbolic quaternions, octonions, and sedenions.
*Applied Mathematics and Computation*, 28(1), 27–47. - Cayley, A. (1845). On Jacobi’s Elliptic functions, in reply to the Rev. Brice Bronwin; and on Quaternions.
*The London, Edinburgh, and Dublin Philosophical Magazine and Journal**of Science*, 26(172), 208–211. - Demir, S. (2013). Hyperbolic octonion formulation of gravitational field equations.
*International Journal of Theoretical Physics*, 52(1), 105–116. - Demir, S., & Tanis¸li, M. (2016). Hyperbolic octonion formulation of the fluid Maxwell equations.
*Journal of the Korean Physical Society*, 68(5), 616–623. - Demir, S., & Zeren, E. (2018). Multifluid plasma equations in terms of hyperbolic octonions.
*International Journal of Geometric Methods in Modern Physics*, 15(4), Article 1850053. - Godase, A. D. (2019). Properties of
*k*-Fibonacci and*k*-Lucas octonions.*Indian Journal of Pure and Applied Mathematics*, 50(4), 979–998. - Godase, A. D. (2020). Hyperbolic
*k*-Fibonacci and*k*-Lucas octonions.*Notes on Number Theory and Discrete Mathematics*, 26(3), 176–188. - Godase, A. D. (2021).
*Study of generalized Fibonacci sequences*. Doctoral dissertation. Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, India. - Godase, A. D., (2021). Hyperbolic
*k*-Fibonacci and*k*-Lucas quaternions.*Mathematics Student*, 90(1–2), 103–116. - Hamilton, W. (1844). On a new species of imaginary quantities connected with a theory of quaternions.
*Proceedings of the Royal Irish Academy*, 2, 424–434. - Hamilton, W. (1866).
*Elements of Quaternions*. Longmans, Green, & Company, UK. - Horadam, A. (1963). Complex Fibonacci numbers and Fibonacci quaternions.
*The American Mathematical Monthly*, 70(3), 289–291. - Kecilioglu, O., & Akkus, I. (2015). The Fibonacci octonions.
*Advances in Applied Clifford Algebras*, 25(1), 151–158. - Macfarlane, A. D. (1900). Hyperbolic quaternions.
*Proceedings of the Royal Society of Edinburgh*, 23, 169–180. - Özkan, E., & Uysal, M. (2022). On hyperbolic
*k*-Jacobsthal and*k*-Jacobsthal–Lucas octonions.*Notes on Number Theory and Discrete Mathematics*, 28(2), 318–330. - Polatlı, E., & Kesim, S. (2015). A note on Catalan’s identity for the
*k*-Fibonacci quaternions.*Journal of Integer Sequences*, 18(8), Article 15.8.2. - Polatlı, E., Kizilates¸, C., & Kesim, S. (2016). On split
*k*-Fibonacci and*k*-Lucas quaternions.*Advances In Applied Clifford Algebras*, 26, 353-362. - Ramirez, J. L. (2015). Some combinatorial properties of the
*k*-Fibonacci and the*k*-Lucas quaternions.*Analele Universitatii Ovidius Constanta-Seria Matematica*, 23(2), 201–212. - Tanıs¸lı, M., Kansu, M. E., & Demir, S. (2012). A new approach to Lorentz invariance in electromagnetism with hyperbolic octonions.
*The European Physical Journal Plus*, 127, Article 69. - Uysal, M., Kumari, M., Kuloglu, B., Prasad, K., & Özkan, E. (2025). On the hyperbolic
*k*-Mersenne and*k*-Mersenne–Lucas octonions.*Kragujevac Journal of Mathematics*, 49(5), 765–779.

### Manuscript history

- Received: 21 October 2023
- Revised: 15 December 2024
- Accepted: 26 February 2024
- Online First: 1 March 2024

### Copyright information

Ⓒ 2024 by the Author.

This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

## Related papers

- Godase, A. D. (2020). Hyperbolic
*k*-Fibonacci and*k*-Lucas octonions.*Notes on Number Theory and Discrete Mathematics*, 26(3), 176–188. - Özkan, E., & Uysal, M. (2022). On hyperbolic
*k*-Jacobsthal and*k*-Jacobsthal–Lucas octonions.*Notes on Number Theory and Discrete Mathematics*, 28(2), 318–330.

## Cite this paper

Godase, A. D. (2024). Some new properties of hyperbolic *k*-Fibonacci and *k*-Lucas octonions. *Notes on Number Theory and Discrete Mathematics*, 30(1), 100-110, DOI: 10.7546/nntdm.2024.30.1.100-110.