M. P. Chaudhary, Sangeeta Chaudhary and Kamel Mazhouda
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 28, 2022, Number 1, Pages 1–8
DOI: 10.7546/nntdm.2022.28.1.1-8
Full paper (PDF, 225 Kb)
Details
Authors and affiliations
M. P. Chaudhary ![]()
Department of Mathematics, Netaji Subhas University of Technology
Sector 3, Dwarka, New Delhi 110078, India
Sangeeta Chaudhary ![]()
School of Computer & System Sciences, Jawaharlal Nehru University
New Delhi 110067, India
Kamel Mazhouda
![]()
Department of Mathematics, University of Monastir
Monastir 5000, Tunisia
Abstract
The authors establish a set of fourteen character formulas in terms of Rβ and Rm functions. Folsom [6] studied character formulas and Chaudhary [5] expressed those formulas in terms of continued fraction identities. Andrews et al. [2] introduced multivariate R-functions, which are further classified as Rα; Rβ, and Rm (for m = 1, 2, 3, …) functions by Srivastava et al. [10].
Keywords
- q-product identities
- Character formulas
- Rα, Rβ and Rm functions
2020 Mathematics Subject Classification
- 05A30
- 11F27
- 05A17
- 11P83
References
- Andrews, G. E. (1998). The Theory of Partitions, Cambridge University Press, Cambridge.
- Andrews, G. E., Bringman K., & Mahlburg, K. (2015). Double series representations for Schur’s partition function and related identities, Journal of Combinatorial Theory, Series A, 132, 102–119.
- Apostol, T. M. (1976). Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics, Springer-Verlag New York.
- Berndt, B. C. (1991). Ramanujan’s Notebooks, Part III, Springer-Verlag New York.
- Chaudhary, M. P. (2014). Generalization for character formulas in terms of continued fraction identities. Malaya Journal of Matematik, 1(1), 24–34.
- Folsom, A. (2011). Kac–Wakimoto characters and universal mock theta functions. Transactions of the American Mathematical Society, 363, 439–455.
- Jacobi, C. G. J. (1829). Fundamenta Nova Theoriae Functionum Ellipticarum. Regiomonti, Sumtibus Fratrum Borntrager, Konigsberg, Germany; Reprinted in Gesammelte Mathematische Werke, 1 (1829), 497–538, American Mathematical Society, Providence, Rhode Island (1969), 97–239.
- Ramanujan, S. (1957). Notebooks, Vols. 1 and 2, Tata Institute of Fundamental Research, Bombay.
- Ramanujan, S. (1988). The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi.
- Srivastava, H. M., Srivastava, R., Chaudhary, M. P., & Uddin, S. (2020). A family of theta function identities based upon combinatorial partition identities and related to Jacobi’s triple-product identity, Mathematics, 8(6), Article ID 918.
Manuscript history
- Received: 23 May 2021
- Revised: 2 November 2021
- Accepted: 15 December 2021
- Online First: 2 February 2022
Related papers
Cite this paper
Chaudhary, M. P., Chaudhary, S., & Mazhouda, K. (2022). Character formulas in terms of Rβ and Rm functions. Notes on Number Theory and Discrete Mathematics, 28(1), 1-8, DOI: 10.7546/nntdm.2022.28.1.1-8.
