Wuttichai Suriyacharoen and Vichian Laohakosol

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 27, 2021, Number 3, Pages 1—11

DOI: 10.7546/nntdm.2021.27.3.1-11

**Download full paper: PDF, 206 Kb**

## Details

### Authors and affiliations

Wuttichai Suriyacharoen

*Department of Mathematics and Statistics, Thammasat University
99 Moo 18 Paholyothin Rd, Klong Nueng, Klong Luang, Pathumthani 12121, Thailand
*

Vichian Laohakosol

*Department of Mathematics, Kasetsart University
50 Ngamwongwan Rd, Chatuchak, Bangkok 10900, Thailand
*

### Abstract

For a fixed positive integer , the functional equation

is solved for multiplicative functions . This complements a 1996 result of Chung [2] which deals with the case . The method used relies on the sum of two squares theorem in number theory.

### Keywords

- Arithmetic function
- Multiplicative function
- Functional equation
- Sum of squares

### 2020 Mathematics Subject Classification

- 11A25
- 39B52

### References

- Bašić, B. (2014). Characterization of arithmetic functions that preserve the sum-of-squares operation. Acta Mathematica Sinica, 4, 689–695.
- Chung, P. V. (1996). Multiplicative functions satisfying the equation
*f*(*m*^{2}+*n*^{2}) =*f*(*m*^{2})+*f*(*n*^{2}). Mathematica Slovaca, 46, 165–171. - Dubickas, A., & Šarka, P. (2013). On multiplicative functions which are additive on sums of primes. Aequationes Mathematicae, 86, 81–89.
- Fang, J. H. (2011). A characterization of the identity function with equation

*f*(*p*+*q*+*r*) =*f*(*p*) +*f*(*q*) +*f*(*r*). Combinatorica, 31, 697–701. - Kátai, I.,& Phong, B. M. (2014). The functional equation
*f*(*A*+*B*) =*g*(*A*) +*h*(*B*). Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös nominatae. Sectio Computatorica, 43, 287–301. - Khanh, B. M. M. (2015). On the equation
*f*(*n*^{2}+*Dm*^{2}) =*f*(*n*)^{2}+*Df*(*m*)^{2}. Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös nominatae. Sectio Computatorica, 44, 59–68. - Khanh, B. M. M. (2019). A note on a result of B. Bojan. Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös nominatae. Sectio Computatorica, 49, 285–297.
- Kim, B., Kim, J. Y., Lee, C. G., & Park, P.-S. (2018). Multiplicative functions additive on generalized pentagonal numbers. Comptes Rendus Mathematique, 356(2), 125–128.
- McCarthy P. J. (1985). Introduction to Arithmetical Functions. Springer, New York.
- Niven, I., Zuckerman, H. S., & Montgomery, H. L. (1991). An Introduction to the Theory of Numbers. Wiley, New York.
- Park, P.-S. (2018). Multiplicative functions commutable with sums of squares. International Journal of Number Theory, 2, 469–478.
- Park, P.-S. (2018). On
*k*-additive uniqueness of the set of squares for multiplicative functions. Aequationes Mathematicae, 92, 487–495. - Spiro, C. (1992). Additive uniqueness sets for arithmetic functions. Journal of Number Theory, 42, 232–246.

## Related papers

## Cite this paper

Suriyacharoen, W., & Laohakosol, V. (2021). Multiplicative functions satisfying the functional equation *κf*(*m*^{2}+*n*^{2}) = *f*(*κm*^{2}) + *f*(*κn*^{2}). Notes on Number Theory and Discrete Mathematics, 27(3), 1-11, doi: 10.7546/nntdm.2021.27.3.1-11.