Abdeldjabar Hamdi and Salim Badidja
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 2, Pages 137–147
DOI: 10.7546/nntdm.2021.27.2.137-147
Full paper (PDF, 212 Kb)
Details
Authors and affiliations
Abdeldjabar Hamdi ![]()
Faculty of Mathematics, University of Youcef Benkhedda Algiers 01
02 Rue Didouche Mourad, 16 000 Algeria
Salim Badidja ![]()
Faculty of Mathematics, University of Kasdi Merbah
Ouargla Route de Ghardaia, BP. 511, 30 000 Algeria
Abstract
In this study, we denote 
 the generalized Tribonacci polynomials, which are defined by 
, 
, with 
, 
, 
 and we drive an explicit formula of 
 in terms of their coefficients 
, Also, we establish some properties of 
. Similarly, we study the Jacobsthal polynomials 
, where 
, 
, with 
, 
 and describe some properties.
Keywords
- Tribonacci polynomials
 - Generalized Tribonacci polynomials
 - Jacobsthal polynomials
 
2020 Mathematics Subject Classification
- 11B39
 - 11B83
 
References
- Badidja, S., & Boudaoud, A. (2017). A unique representation of positive integers as a sum of distinct Tribonacci numbers. Journal of Mathematics and Statistics, 13(1), 57–61.
 - Badidja, S. (2018). Dèecomposition d’entiers illimitès et des termes d’ordre illimitès des suites recurrences linèaires. PhD thesis, University of Mohamed Boudiaf, Msila, Algeria.
 - Chelgham, M., & Boussayoud, A. (2020). Construction of symmetric functions of
generalized Tribonacci numbers. Journal of Science and Arts, 1(50), 65–74. - Gupta, Y. K., Badshah, V. H., Singh, M., & Sisodiya, K. (2016). Some identities of
Tribonacci polynomials. Turkish Journal of Analysis and Number Theory, 4(1), 20–22. - Koshy, T. (2001). Fibonacci and Lucas Numbers with Applications, Wiley-Interscience Publication.
 - Panwar, Y. K., Singh B., & Gupta V. K. (2013). Generalized Fibonacci polynomials. Turkish Journal of Analysis and Number Theory, 1(1), 43–47.
 - Rybołowicz, B., & Tereszkiewicz, A. (2018). Generalized Tricobsthal and generalized Tribonacci polynomials. Applied Mathematics and Computation, 325, 297–308.
 - Soykan, Y., & Okumus, I. (2019). On a generalized Tribonacci sequence. Journal of Progressive Research in Mathematics, 14(3), 1–9.
 
Related papers
Cite this paper
Hamdi, A., & Badidja, S. (2021). Some identities of generalized Tribonacci and Jacobsthal polynomials. Notes on Number Theory and Discrete Mathematics, 27(2), 137-147, DOI: 10.7546/nntdm.2021.27.2.137-147.
								