Paolo Emilio Ricci

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 27, 2021, Number 1, Pages 91–100

DOI: 10.7546/nntdm.2021.27.1.91-100

**Full paper (PDF, 219 Kb)**

## Details

### Authors and affiliations

Paolo Emilio Ricci

*Section of Mathematics, International Telematic University UniNettuno
Corso Vittorio Emanuele II, 39, 00186, Roma, Italia*

### Abstract

The results described in a recent article, relative to a representation formula for the generalized Fibonacci sequences in terms of *Q*-matrices are extended to the case of Fibonacci, Tribonacci and R-bonacci polynomials.

### Keywords

- Fibonacci numbers
- Tribonacci polynomials
- R-bonacci polynomials
*Q*-matrices- Matrix powers.

### 2010 Mathematics Subject Classification

- Primary 11B39
- Secondary 11B83, 12E10, 65Q30, 15A24

### References

- Beerends, R. J. (1991). Chebyshev polynomials in several variables and the radial part ofthe Laplace-Beltrami operator. Transactions of the American Mathematical Society, 328(2),779–814.
- Brenner, J. L. (1954). Linear recurrence relations. American Mathematical Monthly, 61,171–173.
- Bruschi, M., & Ricci, P. E. (1980). I polinomi di Lucas e di Tchebycheff in piu variabili. Rend. Mat., Ser. 6, 13, 507–530.
- Bruschi, M., & Ricci, P. E. (1982). An explicit formula for
*f*(A)and the generating function of the generalized Lucas polynomials. SIAM Journal on Mathematical Analysis,13, 162–165. - Chen, W. Y. C., & Louck, J. D. (1996). The Combinatorial Power of the Companion Matrix. Linear Algebra and its Applications, 232, 261–278.
- Dunn, K. B., & Lidl, R. (1980). Multi-dimensional generalizations of the Chebyshev polynomials, I–II.Proceedings of the Japan Academy, 56, 154–165.
- Gantmacher, F. R. (1959). The Theory of Matrices, Chelsea Pub. Co, New York.
- Gould, H. W. (1981). A history of the Fibonacci Q-matrix and a higher-dimensional problem.The Fibonacci Quarterly, 19, 250–257.
- Hirst, H. P., & Macey, W. T. (1997). Bounding the Roots of Polynomials, The College Mathematics Journal, 28(4), 292–295
- Hoggatt, V. E., & Bicknell, M. (1973). Generalized Fibonacci polynomials. The Fibonacci Quarterly, 11, 457–465.
- Ivie, J. (1972). A general Q-matrix,The Fibonacci Quarterly, 10(3), 255–261, 264.
- Koornwinder, T. H. (1974). Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators, I–II.Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Ser. A, 77, 46–66.
- Koornwinder, T. H. (1974). Orthogonal polynomials in two variables which areeigen functions of two algebraically independent partial differential operators, III–IV.Indagationes Mathematicae, 36, 357–381.
- Lidl, R. (1975). Tschebyscheffpolynome in mehreren variabelen. Journal fur die reine undangewandte Mathematik, 273, 178–198.
- Lidl, R., & Wells, C. (1972). Chebyshev polynomials in several variables. Journal fur diereine und angewandte Mathematik, 255, 104–111.
- Lucas, E. (1891).Theorie des Nombres. Gauthier-Villars, Paris.
- Miles Jr., E.P. (1960). Generalized Fibonacci numbers and associated matrices. The American Mathematical Monthly, 67, 745–752.
- Parodi, M. (1959). La Localisation des Valeurs Caract eristiques des Matrices et ses Applications. Gauthier-Villars, Paris.
- Raghavacharyulu, I. V. V., & Tekumalla, A. R. (1972). Solution of the Difference Equations of Generalized Lucas Polynomials. Journal of Mathematical Physics, 13, 321–324.
- Ricci, P. E. (1976). Sulle potenze di una matrice. Rend. Mat., Ser. 6, 9, 179–194.
- Ricci, P. E. (2020). A note on Golden ratio and higher order Fibonacci sequences. Turkish Journal of Analysis and Number Theory, 8(1), 1–5.
- Singh, P. (1985). The so-called Fibonacci numbers in ancient and medieval India. Historia Mathematica, 12, 229–244.
- Rosenbaum, R. A. (1959). An application of matrices to linear recursion relations. The American Mathematical Monthly, 66, 792–793.
- Yordzhev, K. (2014). Factor-set of binary matrices and Fibonacci numbers. Applied Mathematics and Computation, 236, 235–238

## Related papers

## Cite this paper

Ricci, P. E. (2021). A note on *Q*-matrices and higher order Fibonacci polynomials. *Notes on Number Theory and Discrete Mathematics*, 27(1), 91-100, DOI: 10.7546/nntdm.2021.27.1.91-100.