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1 Introduction

In a recent article the classical equation permitting to compute the powers of the Golden ratio Phi
in terms of Fibonacci’s numbers, by using the companion matrix associated to the second order
recursion, has been recovered. The history of this equation was reported by H .W. Gould [8] and
the considered technique was later extended to general recursions by J. Ivie [11].

It is worth to note that links between the Golden ratio and the Fibonacci numbers – usually
ascribed to J. Kepler, or to É. Lucas – actually date back to Indian mathematicians, in connection
with Sanscrit metrics. In a historical article by P. Singh [22], it is recalled that, long before L.
Pisano (about 1220 BC), Virahanka (600–800 BC), Gopala (before 1135 BC) and Hemachandra
(about 1150 BC) introduced the Fibonacci numbers and the method of their generation.

In [21] the recalled equation, even in the more general case of Tribonacci and, theoretically,
of higher order number sequences has been derived. The method used there is based on the
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Cayley–Hamilton theorem, according to the results in [7] and previous papers by the author on
this subject [4, 20].

In this article, after recalling the Q-matrix method [17] for Fibonacci polynomials, the same
technique proposed in [21] is applied to the Tribonacci and R-bonacci cases [10]. A different
equation with respect to that derived in [11] is proposed.

In a recent article K. Yordzhev [24] considered the set of square boolean matrices with the
same number of 1’s in each row and each column. Associating to each matrix an ordered n-tuple
of natural numbers and introducing a suitable equivalence relation between the factor-sets, he was
able to prove, for particuar values of the parametes, a connection with the sequence of Fibonacci
numbers. Considering the sequence of Tribonacci (or R-bonacci) numbers, we conjecture that it
should be possible to extend the procedure considered in [24] to the case of 3-dimensional (or
R-dimensional) boolean tensors.

2 Basic definitions

Definition. Given an r × r , matrix A = (aij), with real or complex entries its characteristic
polynomial is given by

P (λ) := det(λI − A) = λr − u1λr−1 + u2λ
r−2 + . . .+ (−1)rur . (1)

and the coefficients 

u1 := tr A = a11 + a22 + . . .+ arr

u2 :=

1,r∑
i<j

∣∣∣∣∣ aii aij
aji ajj

∣∣∣∣∣
u3 :=

1,r∑
i<j<k

∣∣∣∣∣∣∣
aii aij aik
aji ajj ajk
aki akj akk

∣∣∣∣∣∣∣
...
ur := det A

(2)

are called the invariants of A.

2.1 Recalling the Fk,n functions

It is well known [4, 19, 20] that a basis for the r-dimensional vector space of solutions of the
homogeneous linear bilateral (i.e., running for all integer indexes) recurrence relation with constant
coefficients uk (k = 1, 2, . . . , r), with ur 6= 0,

Xn = u1Xn−1 − u2Xn−2 + · · ·+ (−1)r−1urXn−r , (n ∈ Z) , (3)

is given by the functions Fk,n = Fk,n(u1, u2, . . . , ur) , (k = 1, 2, . . . , r , n ≥ −1) , defined by the
initial conditions below:
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F1,−1 = 0 F1,0 = 0 . . . F1,r−2 = 1,

F2,−1 = 0 F2,0 = 1 . . . F2,r−2 = 0,
...

... . . . ...

Fr,−1 = 1 Fr,0 = 0 . . . Fr,r−2 = 0.

(4)

Remark 1. The Fk,n functions constitute a different basis with respect to the usual one, which
uses the roots of the characteristic equation [2]. This basis does not imply the knowledge of roots
and does not depend on their multiplicity, so that it is sometimes more convenient.

It has been shown by É. Lucas [16, 20] that all {Fk,n}n∈Z functions are expressed through the
only bilateral sequence {F1,n}n∈Z the bilateral sequence {F1,n}n∈Z , corresponding to the initial
conditions in (4). More precisely, the following equations hold

F1,n = u1F1,n−1 + F2,n−1

F2,n = −u2F1,n−1 + F3,n−1
...
Fr−1,n = (−1)r−2ur−1F1,n−1 + Fr,n−1

Fr,n = (−1)r−1urF1,n−1

(5)

Therefore, the bilateral sequence {F1,n}n∈Z called the fundamental solution of (3) (“fonction
fondamentale” by É. Lucas [16]).

The functions F1,n(u1, . . . , ur) are called in literature [19] generalized Lucas polynomials of
the second kind, and are related to the multivariate Chebyshev polynomials (see e.g. R. Lidl and
C. Wells [15], R. Lidl [14], T. Koornwinder [12, 13], M. Bruschi and P. E. Ricci [3], K. B. Dunn
and R. Lidl [6], R. J. Beerends [1]).

2.2 Matrix powers representation

In preceding articles [4], [20], the following result has been proved:

Theorem 2.1. Given an r × r matrix A, with real or complex entries, and denoting by equation
(1) its characteristic polynomial, the matrix powers An, with integer exponent n, are given by
the equation:

An = F1,n−1(u1, . . . , ur)Ar−1 + F2,n−1(u1, . . . , ur)Ar−2 + · · ·+ Fr,n−1(u1, . . . , ur)I , (6)

where the functions Fk,n(u1, . . . , ur) are defined in Section 2.1.

For more information, see e.g. [20, 23].
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2.3 The general companion matrix

In what follows, we consider the companion matrix

Qr×r = Q :=



u1 1 0 · · · 0 0

u2 0 1 · · · 0 0
...

...
... . . . ...

...
ur−2 0 0 · · · 1 0

ur−1 0 0 · · · 0 1

ur 0 0 · · · 0 0


, (7)

associated with the linear recurrence relation (3).
The invariants of the matrix (7) are given by

u1, −u2, u3, . . . , (−1)rur ,

so that its characteristic polynomial P (λ) is given by equation (1), and its highest eigenvalue (in
modulus) is a solution of the equation

λr = u1λ
r−1 − u2λr−2 + . . .+ (−1)r−1ur−1λ+ (−1)rur . (8)

Recalling Cauchy’s bounds for the roots of polynomials [9, 18], it immediately follows that, in
case of the equation (8), the highest (in modulus) eigenvalue is bounded by

1 + max

{
|ur−1|
|ur|

,
|ur−2|
|ur|

, · · · , 1

|ur|

}
. (9)

3 Extending a Lucas’ formula

The well known equation
Φn = fnΦ + fn−1 , (10)

relating the powers of the Golden ratio with the classical sequence of Fibonacci numbers {fn},
(fn+1 = fn + fn−1, with f0 = 0, f1 = 1) can be derived by using the Q-matrix

Q =

(
1 1

1 0

)
(11)

in the form:

Qn =

(
fn+1 fn
fn fn−1

)
. (12)

In [21] the equation (12) has been recovered by using equation (6), with r = 2.

Remark 2. Note that the definition of the Fibonacci sequence is sometimes started form the initial
conditions f0 = 1, f1 = 1, which simply implies a shift of the index.
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3.1 The Fibonacci polynomial case

Now, it is well known that the companion matrix

Q(x) :=

(
x 1

1 0

)
(13)

is associated to the recursion:

fn+1(x) = x fn(x) + fn−1(x) , (14)

and, assuming the initial conditions: f0(x) = 0, f1(x) = 1, the sequence of Fibonacci
polynomials {fn(x)} follows.

Here, and in what follows, the variable x is assumed to be real or complex, as computations
remain valid in both cases.
In the polynomial case, it is possible to use the same technique described in [21]. In fact, starting
from equation (6), with r = 2, since

F1,n−1(x,−1) = fn(x) F2,n−1(x,−1) = fn−1(x) , (15)

we find
Qn(x) = fn(x)Q(x) + fn−1(x) I , (16)

and then we recover the well known equation:

Qn(x) =

(
fn+1(x) fn(x)

fn(x) fn−1(x)

)
. (17)

3.2 The Tribonacci polynomial case

We consider now the Tribonacci polynomials, defined by the recursion:{
tn+2(x) = x2 tn+1(x) + x tn(x) + tn−1(x),

t0(x) = 0, t1(x) = 1, t2(x) = x2 ,
(18)

so that, by using the above notation, we have:

u1 = x2, u2 = −x, u3 = 1 .

The first few Tribonacci polynomials are:

t1(x) = 1 , t2(x) = x2 , t3(x) = x4 + x , t4(x) = x6 + 2x3 + 1 , t5(x) = x8 + 3x5 + 3x2 .

According to the results in [21], it is suitable to consider even the associated Tribonacci polynomials
{t∗n(x)}, satisfying the same recursion, but with different initial conditions:{

t∗n+2(x) = x2 t∗n+1(x) + x t∗n(x) + t∗n−1(x),

t∗0(x) = 1, t∗1(x) = 0, t∗2(x) = x ,
(19)

The first few associated Tribonacci polynomials are:

t∗0(x) = 1 , t∗1(x) = 0 , t∗2(x) = x , t∗3(x) = x3 + 1 , t∗4(x) = x5 + 2x2 , t∗5(x) = x7 + 3x4 + 2x .

Then, we can prove the following result.
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Theorem 3.1. Introducing the Q3×3(x)-matrix

Q3×3(x) = Q(x) =

 x2 1 0

x 0 1

1 0 0

 , (20)

the positive integer powers of Q(x) (for n ≥ 2) are represented by

Qn(x) =

 tn+1(x) tn(x) tn−1(x)

t∗n+1(x) t∗n(x) t∗n−1(x)

tn(x) tn−1(x) tn−2(x)

 . (21)

Proof. Note that, putting r = 3 and taking into account that u1 = x2, u2 = −x, u3 = 1, the
recursion (3) for the F1,n−1 functions is given by

F1,n−1(x
2,−x, 1) = x2 F1,n−2(x

2,−x, 1) + xF2,n−3(x
2,−x, 1) + F3,n−4(x

2,−x, 1) , (22)

with initial conditions F1,−1 = F1,0 = 0, F1,1 = 1, so that F1,2 = x2. Consequently we find:
F1,2 = t2(x), and in general, F1,n−1(x

2,−x, 1) = tn−1(x).
A similar result holds for the F3,n−1 functions, since we can put the shifted initial conditions

F3,0 = 0, F3,1 = 0, F3,2 = 1, so that F3,3 = x2. Consequently we find: F3,3 = t2(x), and in
general, F3,n−1(x

2,−x, 1) = tn−2(x).
For the F2,n functions we must recall equation (3), which gives:

F2,n−1(x
2,−x, 1) = x2 F2,n−2(x

2,−x, 1) + xF2,n−3(x
2,−x, 1) + F2,n−4(x

2,−x, 1) ,

with initial conditions F2,0 = 1, F2,1 = 0, F2,2 = x, so that F2,3 = x3 + 1. Consequently we
find: F2,3 = t∗3(x), and in general, F2,n−1(x

2,−x, 1) = t∗n−1(x).
Then equation (6)

Qn(x) = F1,n−1(x
2,−x, 1)Q2(x) + F2,n−1(x

2,−x, 1)Q+ F3,n−1(x
2,−x, 1) I

becomes:
Qn(x) = tn−1(x)Q2(x) + t∗n−1(x)Q+ tn−2(x) I , (23)

which is equivalent to (21).

3.3 Checking the first few powers

In order to check equation (21), consider the first matrix powers:

Q2(x) =

 x4 + x x2 1

x3 + 1 x 1

x2 1 0

 , Q3(x) =

 x6 + 2x3 + 1 x4 + x x2

x5 + 2x2 x3 + 1 x

x4 + x x2 1

 ,

Q4(x) =

 x8 + 3x5 + 3x2 x6 + 2x3 + 1 x4 + x

x7 + 3x4 + 2x x5 + 2x2 x3 + 1

x6 + 2x3 + 1 x4 + x x2

 .
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Remark 3. Note that in the computation of Qn+1(x) it is important to find only its first column,
since, at each step, the last column in Qn(x) disappears and the first two columns in Qn(x) are
shifted to the last two ones in Qn+1(x). The general expression of companion matrix powers is
analyzed, by the combinatorial point of view, in [5].

Assuming n = 3 and n = 4, and recalling the first few Tribonacci polynomials and their
associated ones, it is immediately seen that the corresponding rows coincide. Then equation
(21) holds for every n, because the matrix powers satisfy the same recursion of the R-Bonacci
polynomials as well as their associated ones.

4 The R-bonacci polynomial case

We consider now the R-bonacci polynomials defined by the recursion:{
Rn+r(x) = xr−1Rn+r−1(x) + xr−2Rn+r−2(x) + · · ·+Rn(x),

R−k(x) = 0, (k = 0, 1, . . . , r − 3), R1(x) = 1, R2(x) = xr−1.
(24)

In what follows, we put by definition: ϕ
(1)
n (x) := Rn(x). This in order to distinguish the

R-bonacci polynomials defined by (23) from the associated R-bonacci-type polynomials verifying
the same recurrence relation in (23), but different initial conditions. More precisely, we list below
the initial condition for each considered R-bonacci-type sequence:

ϕ
(1)
−r+3(x) = · · · = ϕ

(1)
−1(x) = ϕ

(1)
0 (x) = 0, ϕ

(1)
1 (x) = 1, ϕ

(1)
2 (x) = xr−1 ,

ϕ
(2)
−r+3(x) = · · · = ϕ

(2)
−1(x) = 0, ϕ

(2)
0 (x) = 1, ϕ

(2)
1 (x) = 0, ϕ

(2)
2 (x) = xr−2 ,

...
ϕ
(r−2)
−r+3(x) = 0, ϕ

(r−2)
−r+3(x) = 1, ϕ

(r−2)
−r+4(x) = · · · = ϕ

(r−2)
1 (x) = 0, ϕ

(r−2)
2 (x) = x2 ,

ϕ
(r−1)
−r+3(x) = 1, ϕ

(r−1)
−r+3(x) = ϕ

(r−1)
−r+4(x) = · · · = ϕ

(r−1)
1 (x) = 0, ϕ

(r−1)
2 (x) = x .

Note that the above initial conditions are borrowed from the first r − 1 rows of Q(x), read in
reverse order:

Qr×r(x) = Q(x) :=



xr−1 1 0 · · · 0 0

xr−2 0 1 · · · 0 0
...

...
... . . . ...

...
x2 0 0 · · · 1 0

x 0 0 · · · 0 1

1 0 0 · · · 0 0


. (25)

Therefore, the preceding results can be generalized as follows:

Theorem 4.1. Putting for shortness: (u) := (xr−1, xr−2, · · · , x, 1), that is the first column of
matrix (25), and starting from equation (6):

Qn(x) = F1,n−1(u)Qr−1(x) + F2,n−1(u)Qr−2(x) + · · ·+ Fr,n−1(u) I , (26)
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it is possible to represent the powers of the Q matrix (25) in terms of the sequences {ϕk
n(x)}

(k = 1, 2, · · · , r − 1). More precisely, the following equation holds:

Qn(x) =



ϕ
(1)
n+r−2(x) ϕ

(1)
n+r−3(x) . . . ϕ

(1)
n−1(x)

ϕ
(2)
n+r−2(x) ϕ

(2)
n+r−3(x) . . . ϕ

(2)
n−1(x)

...
... . . . ...

ϕ
(r−1)
n+r−2(x) ϕ

(r−1)
n+r−3(x) . . . ϕ

(r−1)
n−1 (x)

ϕ
(1)
n+r−3(x) ϕ

(1)
n+r−4(x) · · · ϕ

(1)
n−2(x)


. (27)

Proof. The proof follows from the same technique used in Section 3.2. It is sufficient to check
that the rows coincide for the first values of the power n. Then equation holds for every n, because
the powers of Q(x) and the R-bonacci polynomials as well as their associated ones satisfy the
same recursion.
The particular case of the Quadranacci polynomials is shown in the last section.

4.1 Example: the Quadranacci polynomial case

Let r = 4, and consider the Q4×4(x)-matrix

Q4×4(x) = Q(x) =


x3 1 0 0

x2 0 1 0

x 0 0 1

1 0 0 0

 .

Note that, using the above notation, the first few Quadranacci and their associated are:

ϕ
(1)
2 = x3 , ϕ

(1)
3 = x6 + x2 , ϕ

(1)
4 = x9 + 2x5 + x , ϕ

(1)
5 = x12 + 3x8 + 3x4 + 1 , . . .

ϕ
(2)
2 = 0 , ϕ

(2)
3 = x2 , ϕ

(2)
4 = x5 + x , ϕ

(2)
5 = x8 + 2x4 , ϕ

(2)
6 = x11 + 3x7 + 2x3 , . . .

ϕ
(3)
2 = 0 , ϕ

(3)
3 = 0 , ϕ

(3)
4 = x , ϕ

(3)
5 = x4 + 1 , ϕ

(3)
6 = x7 + 2x3 , ϕ

(3)
7 = x10 + 3x6 + 2x2 , . . .

We have:

Q2(x) =


x6 + x2 x3 1 0

x5 + x x2 0 1

x4 + 1 x 0 0

x3 1 0 0

 , Q3(x) =


x9 + 2x5 + x x6 + x2 x3 1

x8 + 2x4 + 1 x5 + x x2 0

x7 + 2x3 x4 + 1 x 0

x6 + x2 x3 1 0

 ,

Q4(x) =


x12 + 3x8 + 3x4 + 1 x9 + 2x5 + x x6 + x2 x3

x11 + 3x7 + 2x3 x8 + 2x4 x5 + x x2

x10 + 3x6 + 2x2 x7 + 2x3 x4 + 1 x

x9 + 2x5 + x x6 + x2 x3 1

 ,

so that the initial conditions coincide and consequently equation (27) holds, by the same argument
recalled in general.

Remark 4. Obviously, the present results, putting x = 1, recover the equations proved in [21] in
the case of Fibonacci, Tribonacci and R-bonacci numbers.
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5 Conclusion

By using a classical result about a representation formula for matrix powers [7], and the basic
solution of a linear recurrence relation, it has been shown that the classical equation for powers
of the Q(x)-matrix, in terms of Fibonacci polynomials, can be easily recovered. Furthermore,
the used technique have been extended to the case of the Tribonacci polynomial sequence, and to
the general case of the higher order R-bonacci polynomial sequences. A representation of these
powers, but different from that proposed, in an old article, by J. Ivie [11] in the case of numerical
sequences is presented.
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