Güzel İpek, Ömür Deveci and Anthony G. Shannon

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 26, 2020, Number 3, Pages 224–233

DOI: 10.7546/nntdm.2020.26.3.224-233

**Full paper (PDF, 233 Kb)**

## Details

### Authors and affiliations

Güzel İpek

*Department of Mathematics, Faculty of Science and Letters
Kafkas University, 36100 Kars, Turkey
*

Ömür Deveci

*Department of Mathematics, Faculty of Science and Letters
Kafkas University, 36100 Kars, Turkey
*

Anthony G. Shannon

*Warrane College, University of New South Wales
Kensington, NSW, 2033,Australia
*

### Abstract

We construct three intercalated sequences and develop their essential properties which are generalizations of the three basic Fibonacci sequences. They are extensions of pulsated sequences described at previous Fibonacci conferences. We relate these sequences to the sequence {*y*_{n}}_{n ≥ 0} = {0, 1, 4, 15, 56, …}.

### Keywords

- Padovan
*p*-circulant sequence - Matrix
- Representation

### 2010 Mathematics Subject Classification

- 11B50
- 11C20
- 20D60

### References

- Akuzum, Y., Deveci, Ö., & Shannon A. G. (2017). On the Pell
*p*-circulant sequences, Notes Number Theory Disc. Math., 23 (2), 91–103. - Brualdi, R. A., & Gibson, P. M. (1997). Convex polyhedra of doubly stochastic matrices I: applications of permanent function, J. Combin. Theory, 22, 194–230.
- Bueno, A. C. F. (2015). On right circulant matrices with general number sequence, Notes Number Theory Disc. Math., 21 (2), 55–58.
- Chen, W. Y. C., & Louck, J. C. (1996). The combinatorial power of the companion matrix, Linear Algebra Appl., 232, 261–278.
- Deveci, Ö. (2016). The Pell-Circulant sequences and their applications, Maejo Int. J. Sci. Technol., 10 (03), 284–293.
- Deveci, Ö. (2018). The Padovan-circulant sequences and their applications, Math. Reports, 20 (70), 401–416.
- Deveci, Ö., Akuzum, Y., & Karaduman, E. (2015). The Pell–Padovan
*p*-sequences and its applications, Util. Math., 98, 327–347. - Deveci, Ö., & Karaduman, E. (2017). On the Padovan
*p*-numbers, Hacettepe J. Math. Stat., 46 (4), 579–592. - Deveci, Ö., Karaduman, E., & Campbell, C. M. (2017). The Fibonacci-circulant sequences and their applications, Iranian J. Sci. Technol. Trans. A-Sci., 1–6.
- Deveci, Ö., & Shannon, A. G. (2017). Pell–Padovan-circulant sequences and their applications, Notes Number Theory Disc. Math., 23 (3), 100–114.
- Gogin, N. D., & Myllari, A. A. (2007). The Fibonacci–Padovan sequence and MacWilliams transform matrices, Program. Comput. Softw., published in Programmirovanie, 33 (2), 74–79.
- Kalman, D. (1982). Generalized Fibonacci numbers by matrix methods, Fibonacci Quart., 20 (1), 73–76.
- Kilic, E. (2009). The generalized Pell (
*p*,*i*)-numbers and their Binet formulas, combinatorial representations, sums, Chaos, Solitons Fractals, 40 (4), 2047–2063. - Lancaster, P., & Tismenesky, M. (1985). The Theory of Matrices, Academic Press.
- Lidl, R., & Niederreiter, H. (1986). Introduction to finite fields and their applications, Cambridge U. P.
- Shannon, A. G. (1974). Some properties of a fundamental recursive sequence of arbitrary order, Fibonacci Quart., 12 (4), 327–335.
- Shannon, A. G., & Horadam, A. F. (1971). Generating functions for powers of third order recurrence sequences, Duke Math. J., 38 (4), 791–794.
- Stakhov, A. P., & Rozin, B. (2006). Theory of Binet formulas for Fibonacci and Lucas
*p*-numbers, Chaos Solitons Fractals, 27, 1162–1167. - Tasci, D., & Firengiz, M. C. (2010). Incomplete Fibonacci and Lucas
*p*-numbers, Math. Comput. Modelling., 52, 1763–1770. - Tuglu, N., Kocer, E. G., & Stakhov, A. P. (2011). Bivariate Fibonacci-like
*p*-polynomials, Appl. Math. Comput., 217 (24), 10239–10246.

## Related papers

## Cite this paper

İpek, G., Deveci, Ö.*, *& Shannon, A. G. (2020). On the Padovan *p*-circulant numbers. *Notes on Number Theory and Discrete Mathematics*, 26 (3), 224-233, DOI: 10.7546/nntdm.2020.26.3.224-233.