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Abstract: In this paper, we define Padovan p-circulant numbers by using circulant matrices
which are obtained from the characteristic polynomials of the Padovan p-numbers. Then, we
derive the permanental and the determinantal representations of the Padovan p-circulant numbers
by using certain matrices which are obtained from the generating matrix of Padovan p-circulant
sequence. Also, we obtain the combinatorial representation, the exponential representation and
the sums of the Padovan p-circulant numbers by the aid of the generating function and the
generating matrix of the Padovan p-circulant sequence.
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1 Introduction

It is well-known that Padovan sequence is defined by the following equation:

P (n) = P (n− 2) + P (n− 3)

for n ≥ 3, where P (0) = P (1) = P (2) = 1.
Deveci and Karaduman defined [8] the Padovan p-numbers as shown:
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pap (n+ p+ 2) = pap (n+ p) + pap (n)

for any given p (p = 2, 3, 4, . . .) and n ≥ 1 with initial conditions pap (1) = pap (2) = · · · =
pap (p) = 0, pap (p+ 1) = 1 and pap (p+ 2) = 0.

Suppose that the (n+ k)th term of a sequence is defined recursively by a linear combination
of the preceding k terms:

an+k = c0an + c1an+1 + · · ·+ ck−1an+k−1

where c0, c1, . . . , ck−1 are real constants. In [12], Kalman derived a number of closed-form
formulas for the generalized sequence by the companion matrix method as follows:

Let the matrix A be defined by

A = [ai,j]k×k =



0 1 0 · · · 0 0 0

0 0 1 0 · · · 0 0

0 0 0 1 0 · · · 0
...

... . . . . . . . . . . . . ...
0 0 · · · 0 0 1 0

0 0 0 · · · 0 0 1

c0 c1 c2 · · · ck−3 ck−2 ck−1


,

then

An


a0
a1
...

ak−1

 =


an
an+1

...
an+k−1


for n > 0.

Many of the numbers obtained by using homogeneous linear recurrence relations and their
miscellaneous properties have been studied by some authors; see for example [1,3,5–7,9–11,13,
18–20]. In this paper, we define Padovan p-circulant numbers and then we
obtain their some properties such as the generating matrix, the Binet formula, the combinato-
rial representation, the generating function, exponential representation.

2 The Padovan p-circulant numbers

We define the Padovan p-circulant numbers for n ≥ 1 as follows:

xn+p+3 = xn+p+2 − xn+p − xn (1)

with initial constants x1 = · · · = xp+2 = 0 and xp+3 = 1, where p ≥ 2.
It is important to note that equation (1) is a (p+ 3)-th order homogeneous linear recurrence

relation example of the arbitrary-order equation (1.1) in [16].
By equation (1), we can write the following companion matrix:
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Cp = [cij](p+3)×(p+3) =



1 0 −1 0 · · · 0 −1
1 0 0 · · · 0 0 0

0 1 0 0 · · · 0 0

0 0 1 0 0 · · · 0
... . . . . . . . . . . . . . . . ...
0 · · · 0 0 1 0 0

0 0 · · · 0 0 1 0


.

The matrix Cp is called the Padovan p-circulant matrix. It is easy to see that

(Cp)
α


xp+3

xp+2

...
x1

 =


xα+p+3

xα+p+2

...
xα+1


for α ≥ 0. Also, by an inductive argument, we may write

(Cp)
α
=



xα+p+3 xα+p+4 − xα+p+3 xα+p+5 − xα+p+4 −xα+3 −xα+4 · · · −xα+p+2

xα+p+2 xα+p+3 − xα+p+2 xα+p+4 − xα+p+3 −xα+2 −xα+3 · · · −xα+p+1

xα+p+1 xα+p+2 − xα+p+1 xα+p+3 − xα+p+2 −xα+1 −xα+2 · · · −xα+p
xα+p xα+p+1 − xα+p xα+p+2 − xα+p+1 −xα −xα+1 · · · −xα+p−1

...
...

...
...

...
. . .

...
xα+2 xα+3 − xα+2 xα+4 − xα+3 −xα−p+2 −xα−p+3 · · · −xα+1

xα+1 xα+2 − xα+1 xα+3 − xα+2 −xα−p+1 −xα−p+2 · · · −xα


(2)

for α ≥ p. we easily derive that det (Cp)
α = (−1)pα+α.

Now we concentrate on the Binet formula for the Padovan p-circulant numbers by the aid of
the determinantal representation.

Lemma 2.1. The characteristic equation of the Padovan p-circulant sequence xp+3−xp+2+xp+

1 = 0 does not have multiple roots.

Proof. There is a similar proof in [8]. Let f (x) = xp+3 − xp+2 + xp + 1 and suppose that
z is a multiple root of f (x). Then, since z is a multiple root, z is a root of f ′ (x), that is,
f (z) = zp+3 − zp+2 + zp + 1 = 0 and f ′ (z) = (p+ 3) zp+2 − (p+ 2) zp+1 + pzp−1 =

zp−1 ((p+ 3) z3 − (p+ 2) z2 + p) = 0. Since f (0) 6= 0, we consider the equations
(p+ 3) z3 − (p+ 2) z2 + p = 0. Thus we obtain

z1 =
( 3√2(−p−2)2)

3(p+3)
(
−25p3−150p2+3

√
3
√

23p6+276p5+1230p4+2380p3+1563p2−288p−219p+16
) 1

3
+

(
−25p3−150p2+3

√
3
√

23p6+276p5+1230p4+2380p3+1563p2−288p−219p+16
) 1

3

3 3√2(p+3)
− −p−2

3(p+3)

z2 = −
(1+i

√
3)(−p−2)2

3×2
2
3 (p+3)

(
−25p3−150p2+3

√
3
√

23p6+276p5+1230p4+2380p3+1563p2−288p−219p+16
) 1

3

−(1−i
√
3)

(
−25p3−150p2+3

√
3
√

23p6+276p5+1230p4+2380p3+1563p2−288p−219p+16
) 1

3

6 3√2(p+3)
− −p−2

3(p+3)

and
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z3 = −
(1−i

√
3)(−p−2)2

3×2
2
3 (p+3)

(
−25p3−150p2+3

√
3
√

23p6+276p5+1230p4+2380p3+1563p2−288p−219p+16
) 1

3
−

(1+i
√
3)

(
−25p3−150p2+3

√
3
√

23p6+276p5+1230p4+2380p3+1563p2−288p−219p+16
) 1

3

6 3√2(p+3)
− −p−2

3(p+3)
.

For p ≥ 2, f (z1) 6= 0, f (z2) 6= 0 and f (z3) 6= 0, which is contradiction. Thus, the equation
f (x) = 0 does not have multiple roots.

If x1, x2, . . . , xp+3 are roots of the equation xp+3 − xp+2 + xp + 1, then by Lemma 2.1, it is
known that x1, x2, . . . , xp+3 are distinct. Let V p be a (p+ 3) × (p+ 3) Vandermonde matrix as
follows:

V p =


(x1)

p+2 (x2)
p+2 · · · (xp+3)

p+2

(x1)
p+1 (x2)

p+1 · · · (xp+3)
p+1

...
...

...
x1 x2 · · · xp+3

1 1 · · · 1

 .

Let

W p
i =


(x1)

α+p+3−i

(x2)
α+p+3−i

...
(xp+3)

α+p+3−i


and suppose that V p

i,j is a (p+ 3)× (p+ 3) matrix obtained from V p by replacing the j-th column
of V p by W p

i .

Theorem 2.2. Let (Cp)
α =

[
cp,αi,j
]
, then cp,αi,j =

detV p
i,j

detV p
, for α ≥ p and p ≥ 2.

Proof. Since the eigenvalues of the matrix Cp, x1, x2, . . ., xp+3 are distinct, the matrix Cp is
diagonalizable. Let Gp = diag (x1, x2, . . . xp+3), then it is easy to see that CpV p = V pGp. Since
detV p 6= 0, the matrix V p is invertible. Then we obtain (V p)−1CpV

p = Gp. Thus, the matrix Cp
is similar to Gp. So we get (Cp)

α V p = V p (Gp)
α for α ≥ p and p ≥ 2. Then we can write the

following linear system of equations:
cp,αi,1 (x1)

p+2 + cp,αi,2 (x1)
p+1 + · · ·+ cp,αi,p+3 = (x1)

α+p+3−i

cp,αi,1 (x2)
p+2 + cp,αi,2 (x2)

p+1 + · · ·+ cp,αi,p+3 = (x2)
α+p+3−i

...
cp,αi,1 (xp+3)

p+2 + cp,αi,2 (xp+3)
p+1 + · · ·+ cp,αi,p+3 = (xp+3)

α+p+3−i

for α ≥ p and p ≥ 2. Therefore, for each i, j = 1, 2, . . . , p+ 3, we obtain cp,αi,j as follows

cp,αi,j =
detV p

i,j

detV p
.

So we have the following useful results.

Corollary 2.3. Let xα be the αth the Padovan p-circulant number for p ≥ 2. Then

xα = −
detV p

n,n

detV p
for 4 ≤ n ≤ p+ 3.

Now we consider the permanental representations of the Padovan p-circulant numbers.
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Definition 2.1. Let M = [mi,j] be u × v real matrix and let r1, r2, . . . , ru and c1, c2, . . . , cv

be respectively, the row and column vectors of M . If rα contains exactly two non-zero entries,
then M is contractible on row α. Similarly, M is contractible on column β provided cβ contains
exactly two non-zero entries.

Let x1, x2, . . . , xu be row vectors of the matrixM and letM be contractible in the α-th column
with mi,α 6= 0,mj,α 6= 0 and i 6= j. Then the (u− 1) × (v − 1) matrix Mij:α obtained from M

by replacing the i-th row with mi,αxj +mj,αxi and deleting the j-th row and the α-th column is
called the contraction in the α-th column relative to the i-th row and the j-th row.

In [2], Brualdi and Gibson obtained that per (M) = per (N) if M is a real matrix of order
u > 1 and N is a contraction of M.

Let k ≥ p + 3 be a positive integer and suppose that G (k, p) =
[
gk,pi,j

]
is the k × k super-

diagonal matrix, defined by

gk,pi,j =


1, if i = t and j = t for 1 ≤ t ≤ k and i = t+ 1 and j = t for 1 ≤ t ≤ k − 1,

−1, if i = t and j = t+ 2 for 1 ≤ t ≤ k − 2 and i = t

and j = t+ p+ 2 for 1 ≤ t ≤ k − p− 2,
0, otherwise,

that is,

G (k, p) =

(p+ 3) th

↓

1 0 −1 0 · · · 0 −1 0 · · · 0 0 0

1 1 0 −1 0 · · · 0 −1 0 · · · 0 0

0 1 1 0 −1 0 · · · 0 −1 0 · · · 0
... . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
0 · · · 0 1 1 0 −1 0 · · · 0 −1 0

0 0 · · · 0 1 1 0 −1 0 · · · 0 −1
0 0 0 · · · 0 1 1 0 −1 0 · · · 0
...

... . . . . . . . . . . . . . . . . . . . . . . . . ...
0 0 0 0 0 · · · 0 1 1 0 −1 0

0 0 0 0 0 0 · · · 0 1 1 0 −1
0 0 0 0 0 0 0 · · · 0 1 1 0

0 0 0 0 0 0 0 0 · · · 0 1 1



.

Theorem 2.4. For k > p+ 3 and p ≥ 2,

perG (k, p) = xk+p+3.

Proof. We will use the induction method on k. Suppose that the equation holds k > p + 3, then
we show that the equation holds for k+1. If we expand the perG (k, p) by the Laplace expansion
of permanent according to the first row, then we obtain

perG (k + 1, p) = perG (k, p)− perG (k − 2, p)− perG (k − p− 2, p) .
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Since perG (k, p) = xk+p+3, perG (k − 2, p) = xk+p+1 and perG (k − p− 2, p) = xk+1, we
easily obtain that perG (k + 1, p) = xk+p+4.

Let k > p+ 3 and let Y (k, p) =
[
yk,pi,j

]
be the k × k matrix, defined by

yk,pi,j =



1

if i = t and j = t for 1 ≤ t ≤ k − p− 2

and
i = t+ 1 and j = t for 1 ≤ t ≤ k − 1,

−1
if i = t and j = t+ 2 for 1 ≤ t ≤ k − p− 2

and
i = t and j = t+ p+ 2 for 1 ≤ t ≤ k − p− 2,

0 otherwise.

.

Now we define the k × k matrix L (k, p) =
[
lk,pi,j

]
as follows:

L (k, p) =

(k − p− 3) th

↓

1 · · · 1 0 · · · 0

1

0
... Y (k − 1, p)

0

0


where k > p+ 3.

Then we can give other permanental representations than the above.

Theorem 2.5. (i). For k ≥ p+ 3,

perY (k, p) = −xk.

(ii) . For k > p+ 3,

perL (k, p) = −
k−1∑
i=1

xi.

Proof. (i) .Suppose that the equation holds for k ≥ p + 3, then we show that the equation holds
for k + 1. If we expand the perY (k, p) by the Laplace expansion of permanent according to the
first row, then we obtain

perY (k + 1, p) = perY (k, p)− perY (k − 2, p)− perY (k − p− 2, p)

= −xk + xk−2 + xk−p−2 = −xk+1.

The conclusion is obtained.
(ii) . If we extend the perL (k, p) with respect to the first row, we write

perL (k, p) = perL (k − 1, p) + perY (k − 1, p) .

By the results of Theorem 2.4 and Theorem 2.5. (i) and the inductive argument, the proof is easily
seen.
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A matrix M is called convertible if there is an n × n (1,−1)-matrix K such that
perM = det (M ◦K), where M ◦K denotes the Hadamard product of M and K.

Let k > p+ 3 and let R be the k × k matrix, defined by

R =



1 1 1 · · · 1 1

−1 1 1 · · · 1 1

1 −1 1 · · · 1 1
... . . . . . . . . . . . . ...
1 · · · 1 −1 1 1

1 · · · 1 1 −1 1


.

It is easy to see that perG (k, p) = det (G (k, p) ◦R), perY (k, p) = det (Y (k, p) ◦R) and
perL (k, p) = det (L (k, p) ◦R). Then we have the following useful results.

Corollary 2.6. For k > p+ 3,

det (G (k, p) ◦R) = xk+p+3,

det (Y (k, p) ◦R) = −xk

and

det (L (k, p) ◦R) = −
k−1∑
i=1

xi.

Let K (k1, k2, . . . , kv) be a v × v companion matrix as follows:

K (k1, k2, . . . , kv) =


k1 k2 k3 · · · kv
1 0 0 · · · 0

0 1 0 · · · 0
... . . . . . . . . . ...
0 · · · 0 1 0

 .

See [14, 15] for more information about the companion matrix.

Theorem 2.7. (Chen and Louck [4]).The (i, j) entry k
(u)
i,j (k1, k2, . . . , kv) in the matrix

Ku (k1, k2, . . . , kv) is given by the following formula:

k
(u)
i,j (k1, k2, . . . , kv) =

∑
(t1,t2,...,tv)

tj + tj+1 + · · ·+ tv
t1 + t2 + · · ·+ tv

×
(
t1 + · · ·+ tv
t1, . . . , tv

)
kt11 · · · ktvv (3)

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · · + vtv = u − i + j,(
t1 + · · ·+ tv
t1, . . . , tv

)
=

(t1 + · · ·+ tv)!

t1! · · · tv!
is a multinomial coefficient, and the coefficients in (3) are

defined to be 1 if u = i− j.

Then we have the following Corollary for the Padovan p-circulant numbers.
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Corollary 2.8. Let xα be the αth Padovan p-circulant number. Then

xα = −
∑

(t1,t2...,tp+3)

t4 + t5 + · · ·+ tp+3

t1 + t2 + · · ·+ tp+3

×
(
t1 + · · ·+ tp+3

t1, . . . , tp+3

)
(−1)t3+tp+3

= −
∑

(t1,t2...,tp+3)

t5 + t6 + · · ·+ tp+3

t1 + t2 + · · ·+ tp+3

×
(
t1 + · · ·+ tp+3

t1, . . . , tp+3

)
(−1)t3+tp+3

= · · ·

= −
∑

(t1,t2...,tp+3)

tp+3

t1 + t2 + · · ·+ tp+3

×
(
t1 + · · ·+ tp+3

t1, . . . , tp+3

)
(−1)t3+tp+3

where the summation is over nonnegative integers satisfying t1 + 2t2 + · · ·+ (p+ 3) tp+3 = α.

Proof. In Theorem 2.7 , if we choose v = p + 3 and i = j such that 4 ≤ i, j ≤ p + 3 , then the
proof is immediately seen from (2).

The generating function of the Padovan p-circulant numbers is given by

gp (y) =
yp+2

1− y + y3 + yp+3
,

where p ≥ 2.

Note that the generating function gp (y) is, in effect, a generalization of the main result in
Section 2 of [17].

Now we give an exponential representation for the Padovan p-circulant numbers with the
following Theorems.

Theorem 2.9. The Padovan p-circulant numbers have the following exponential representation:

gp (y) = yp+2 exp

(
∞∑
i=1

(y)i

i

(
1− y2 + yp+2

)i)
.

Proof. Since

ln gp (y) = ln
yp+2

1− y + y3 + yp+3

= ln yp+2 − ln
(
1− y + y3 + yp+3

)
and

− ln
(
1− y + y3 + yp+3

)
= −

[
−y
(
1− y2 − yp+2

)
− 1

2
y2
(
1− y2 − yp+2

)2 − · · ·
− 1

n
yn
(
1− y2 − yp+2

)n − · · · ] ,
it is clear that

ln
gp (y)

yp+2
=
∞∑
i=1

(y)i

i

(
1− y2 + yp+2

)i
.

Thus we have the conclusion.
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Now we give the sums of the Padovan p-circulant numbers.
Let Sα =

∑α
n=1 xn and suppose that Mp is the (p+ 4)× (p+ 4) matrix such that

Mp =


1 0 · · · 0

1

0 Cp
...
0

 .

Then it can be shown by induction that

(Mp)
α =


1 0 · · · 0

Sα+p+2

Sα+p+1 (Cp)
α

...
Sα

 .

3 Conclusion

We have given Padovan p-circulant numbers. These sequences had defined by using circulant
matrices which had obtained from the characteristic polynomials of the Padovan p-numbers. Also,
we have given relationships between Padovan p-circulant numbers and the generating matrices of
these sequences. Then we have obtained some properties of the Padovan p-circulant numbers such
as the Binet formula, permanental, determinantal, combinatorial, exponential representations and
we have derived a formula for the sums of the Padovan p-circulant numbers.
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