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Abstract: In this paper, we define Padovan p-circulant numbers by using circulant matrices
which are obtained from the characteristic polynomials of the Padovan p-numbers. Then, we
derive the permanental and the determinantal representations of the Padovan p-circulant numbers
by using certain matrices which are obtained from the generating matrix of Padovan p-circulant
sequence. Also, we obtain the combinatorial representation, the exponential representation and
the sums of the Padovan p-circulant numbers by the aid of the generating function and the
generating matrix of the Padovan p-circulant sequence.
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1 Introduction
It is well-known that Padovan sequence is defined by the following equation:
P(n)=P(n—2)+ P (n—3)

forn > 3, where P (0) = P (1) = P(2) = 1.
Deveci and Karaduman defined [8] the Padovan p-numbers as shown:
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pap (n +p+2) = pap (n + p) + pap (n)
for any given p (p = 2,3,4,...) and n > 1 with initial conditions pap (1) = pap (2) = --- =
pap (p) = 0, pap (p+ 1) = 1 and pap (p + 2) = 0.
Suppose that the (n + k)th term of a sequence is defined recursively by a linear combination
of the preceding £ terms:

Upik = Colyp + C1Gp41 + -+ + Ck10p k-1

where cg,cq,...,cx_1 are real constants. In [12], Kalman derived a number of closed-form
formulas for the generalized sequence by the companion matrix method as follows:
Let the matrix A be defined by

[0 1 0 o 0 0 |
0O 0 1 0 0 0
0O 0 O 1 0 0
A:[ai,j]kxk: ,
0 O 0 0 1 0
0O 0 O 0 0 1
L Ch €1 C -+ Cp—3 Cp—2 Cg—1 i
then
Qo Qp,
an | o] O
Ak—1 Apyk—1
forn > 0.

Many of the numbers obtained by using homogeneous linear recurrence relations and their
miscellaneous properties have been studied by some authors; see for example [1,3,5-7,9-11, 13,
18-20]. In this paper, we define Padovan p-circulant numbers and then we
obtain their some properties such as the generating matrix, the Binet formula, the combinato-
rial representation, the generating function, exponential representation.

2 The Padovan p-circulant numbers
We define the Padovan p-circulant numbers for n > 1 as follows:

Tn+p+3 = Tntp+2 = Tntp — Tn (D

with initial constants z; = - -+ = ;9 = 0 and z,,.3 = 1, where p > 2.

It is important to note that equation (1) is a (p + 3)-th order homogeneous linear recurrence
relation example of the arbitrary-order equation (1.1) in [16].

By equation (1), we can write the following companion matrix:
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(1 0 -1 0 0 -1 ]
1 0 0 0 0 0
01 0 0 0 0
Cyp = lealiprapepn = | 0 0 1 0 0 0
0O -~ 0 0 1 0 0
00 - 0 0 1 0

The matrix C), is called the Padovan p-circulant matrix. It is easy to see that

Tp+3 Lo+p+3
T T
p+2 a+p+2
(Cp)® =
p .
I Ta+1

for a > 0. Also, by an inductive argument, we may write

Latp+3 LTatpt+d = Latp+3d Latp+s — Latptd  —Latl “Tatda 0 T Tatpt2
Tatp+2 Toa+p+3 — Latp+2 Toatp+d — Latp+3  —Lat2 ~Za+3 7 TToatptl
Tatp+l Tatp+2 — Tatptl Tatp+d — Tatpt2  —Ta+tl “Tat2 0 T Tatp
(Cp)* = La+p Latp+l — Tatp  LTatp+2 — Tatp+l —Ta “Ta+1 0 T Tatp-1 2)
T2 Ta+3 — Ta+2 Ta4+4 — Ta+3 —Ta—-p+2 —Ta—p+3 —Ta+1
Lo+1 Lo+2 — Tat1 La+3 — Tat2 ~LTa-p+1 ~La-pt+2 Lo |

for a > p. we easily derive that det (C,)* = (—1)?*",
Now we concentrate on the Binet formula for the Padovan p-circulant numbers by the aid of
the determinantal representation.

Lemma 2.1. The characteristic equation of the Padovan p-circulant sequence xP+3 — xP+2 4 P +
1 = 0 does not have multiple roots.

Proof. There is a similar proof in [8]. Let f(z) = zP*® — 2™ + 2P + 1 and suppose that
z is a multiple root of f (x). Then, since z is a multiple root, z is a root of f’(x), that is,
f(z) = 2PP3 — 2PT2 4 2P 4+ 1 = 0and f'(2) = (p+3)2P™2 — (p+2) 2P + p2P! =
P ((p+3)23—(p+2)22+p) = 0. Since f(0) # 0, we consider the equations
(p+3)2%— (p+2) 2%+ p= 0. Thus we obtain
(V2(-p-2)?)

21 = T+
3(p+3) (—25p3 — 150p2+3\/§\/ 23p0+276p5+1230p%+2380p3+1563p>2 —288p—219p+16) 3
1
(—25p3—150p2+3\/§\/ 23p6+276p5+1230p4+2380p3+1563p2—288p—219p+16> 3 —p—2
3V2(p+3) ~ 3(p+3)
(1+iv3)(—p—2)°
22 = — 5 T
3x23 (p+3) (*25p37150p2+3\/§\/ 23p6+276p5+1230p4+2380p3+1563p27288p7219p+16> 3
1
(1—1'\/3) (—25p3—150p2+3\/§\/ 23p6+276p5+1230p4+2380p3+1563p2—288p—219p+16) 3 -2
B 62(p+3) T 3(p+3)
and
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(1-iv3)(—p—2)°

3 — — 1T
3x23 (p+3) (—2508 15002 +3v/3/23p5+276p7+1230p1 +2380p+1563p2 —288p—219p+16 ) *
1
(1+i\/§) (—25p3—150p2+3\/§\/ 23])6+276p5+1230p4+2380p3+1563p2—288p—219p+16> 3 —p—2
6 2(p+3) ~ 3(p+3)”
Forp > 2, f(z1) #0, f(22) # 0and f (z3) # 0, which is contradiction. Thus, the equation
f (z) = 0 does not have multiple roots. O
If x1, 2o, ..., 2,3 are roots of the equation 2P — 272 + 2P + 1, then by Lemma 2.1, it is
known that 1, o, ..., x,;3 are distinct. Let V? be a (p + 3) x (p + 3) Vandermonde matrix as
follows: -~ " » o
(21)” (22)" (p+3)"
+1 +1 +1
(@)™ (z2)" e (2pea)”
VP — .
xl :L'2 o .. xp+3
1 1 e 1
Let
(fEl)OH_erg_i
a+p+3—i
(22)
I/Vip =
+p+3—i
(@pes)

and suppose that V", is a (p + 3) X (p + 3) matrix obtained from V'? by replacing the j-th column
of VP by W/,

N N , det ij
Theorem 2.2. Let (C,)" = [cf] |, then = ot V’ fora>pandp > 2.
Proof. Since the eigenvalues of the matrix C), 21, x2, ..., Tp43 are distinct, the matrix C), is

diagonalizable. Let G, = diag (%1, X2, ... Tpy3), then it is easy to see that C,V’» = VPG, Since
det VP # 0, the matrix V? is invertible. Then we obtain (V)" C,V? = G,. Thus, the matrix C,
is similar to G,,. So we get (C,,)* V? = V? (G,)” for @« > p and p > 2. Then we can write the
following linear system of equations:

@) (@) ek = ()
Y ()" A g () A g = ()T
’ 2 5 1 37
Cf,la (xzv-&-i’))p+ ‘1'023 (xp—irii)p+ +Cpp+3 (Qano—iri’»)O[ﬂDJr '

for a > p and p > 2. Therefore, for each i, j = 1,2,...,p + 3, we obtain ¢;’;" as follows

det V2.
At = 2 O
b det VP

So we have the following useful results.

Corollary 2.3. Let x, be the ath the Padovan p-circulant number for p > 2. Then

det VP,
dot v “ford <n<p+3.

Now we consider the permanental representations of the Padovan p-circulant numbers.

Lo — —
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2 2 v

Definition 2.1. Let M = [m; ;] be u X v real matrix and let v, r* ... ,r* and c',c*, ... ¢
be respectively, the row and column vectors of M. If r™ contains exactly two non-zero entries,
then M is contractible on row «. Similarly, M is contractible on column B provided c® contains

exactly two non-zero entries.

Letzq, xo, ..., z, be row vectors of the matrix M and let M be contractible in the a-th column
with m; o, # 0,m;, # 0 and ¢ # j. Then the (v — 1) X (v — 1) matrix M,;., obtained from M
by replacing the ¢-th row with m; ,x; + m; ,x; and deleting the j-th row and the a-th column is
called the contraction in the a-th column relative to the i-th row and the j-th row.

In [2], Brualdi and Gibson obtained that per (M) = per (N) if M is a real matrix of order
u > 1 and N is a contraction of M.

Let £ > p + 3 be a positive integer and suppose that G (k,p) = [gf 7 } is the k& x k super-
diagonal matrix, defined by

1, ifi=tandj=tforl <t<kandi=t+landj=tforl <t<k—1,
ifi=tandj=t+2forl <t <k—2andi=1

andj=t+p+2forl <t<k—p-—2,
0, otherwise,

kp _
95 =y ~

that is,
(p+3)th
— \l/ —

0 -1 0 0 -1 0 0 0 0

0 -1 0 0O -1 0 0 0

0 1 0 -1 0 0 -1 0 0

0 0 1 0 -1 0 0O -1 0

0 O 0 0 -1 0 0 -1

G(k,p) =

0 0 0 0 1 0O -1 0 0

0 O 0 0 0 0 1 1 0O -1 0

0 0 0 0 0 0 0 1 -1

0 O 0 0 0 0 0 1 1 0

0 O 0 0 0 0 0 0 0 1

Theorem 2.4. Fork > p+ 3 and p > 2,

perG (k,p) = T4p+3.

Proof. We will use the induction method on k. Suppose that the equation holds £ > p + 3, then
we show that the equation holds for £ + 1. If we expand the perG (k, p) by the Laplace expansion
of permanent according to the first row, then we obtain

perG (k+1,p) = perG (k,p) — perG (k — 2,p) — perG (k —p — 2,p) .
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Since perG (k,p) = Tiipts, perG(k —2,p) = Tpipr1 and perG (k —p —2,p) = Xpy4q, We
easily obtain that perG (k + 1, p) = Tjipia. O

Letk >p+3andletY (k,p) = [yf’]p } be the £ x k matrix, defined by

ifir=tandj=tforl1 <t<k—p—2
1 and
i=t+1land j=tforl <t <k-—1,
yrr = ifi=tandj=t+2forl <t<k—p—2
—1 and
t=tandj=t+p+2forl <t<k—p-—2,
0 otherwise.

\

Now we define the k x k matrix L (k,p) = [lf H ] as follows:

(k—p—3)th
1
1 ... 1 0 e 0]
1
L (k ;
bp=1 Y (k—1,p)
0
_0 -

where k > p + 3.
Then we can give other permanental representations than the above.

Theorem 2.5. (i). For k > p + 3,
perY (k,p) = —xy.
(13) . For k > p+ 3,

k-1
perL (k,p) = — Z T
i=1

Proof. (i) .Suppose that the equation holds for £ > p + 3, then we show that the equation holds
for k + 1. If we expand the perY (k, p) by the Laplace expansion of permanent according to the
first row, then we obtain

perY (k+1,p) = perY (k,p) —perY (k —2,p) —perY (k—p—2,p)
= —Tkp+ Tp2+ Tk—p-2= —Tkt1-

The conclusion is obtained.
(17) . If we extend the perL (k, p) with respect to the first row, we write

perL (k,p) =perL (k —1,p) + perY (k —1,p).

By the results of Theorem 2.4 and Theorem 2.5. (i) and the inductive argument, the proof is easily
seen. [
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A matrix M is called convertible if there is an n x n (1,—1)-matrix K such that
perM = det (M o K'), where M o K denotes the Hadamard product of M and K.
Let k£ > p + 3 and let R be the k x k matrix, defined by

11 1 - 11
-1 1 1
1 -1 1 11
R =
-1 1 1
1 - 11 -1 1

It is easy to see that perG (k,p) = det (G (k,p) o R), perY (k,p) = det (Y (k,p) o R) and
perL (k,p) = det (L (k,p) o R). Then we have the following useful results.

Corollary 2.6. For k > p + 3,
det (G (k,p) © R) = Tpypss,

det (Y (k,p) o R) = —x,

and
k-1
det (L (k.p) o R) = — s
=1
Let K (kq, ko, ..., k,) be av X v companion matrix as follows:
[ ky Ky ks oo Ky
1 0 0 0
K (ki ks k)=]0 1 0 - 0
| 0 0 1 0|

See [14, 15] for more information about the companion matrix.

Theorem 2.7. (Chen and Louck [4]).The (i,j) entry k’l(q;) (k1,ko,...,k,) in the matrix
K" (k1, ko, ..., ky) is given by the following formula:

fidbti 4oty [ttty
k(u) k k: o kv _ 7 7+ % ktl e ktv 3
Z,]<1’ 2 ) ) Z t1+t2++tv tl,...,tv ! v ()

(t1,t2,..5tw)

where the summation is over nonnegative integers satisfying t, + 2to + --- +vt, = v — 1+ 7,
Cr%n+%)_(h+”ﬁ%ﬂ

y . T is a multinomial coefficient, and the coefficients in (3) are
1y ly 12 byt

defined to be 1 if u =1 — j.

Then we have the following Corollary for the Padovan p-circulant numbers.
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Corollary 2.8. Let x,, be the ath Padovan p-circulant number. Then

Z batts 4+ lpis (tl oty (= 1)ttt
bty + ot by

To = —

oot
(tl,tg...,tp+3) ’ ) “p+3

_ Z t5+t6+---+tp+3x(t1+~-+tp+3>(_1)t3+tp+3
thtta+- +itps by tpts

(tl,tQ...,tp+3)

. fpis y (tl +ot tw) (1)t
b1+t + -+ tpys3 ty oy tpts
(tl,tz...,tp+3)

where the summation is over nonnegative integers satisfying t; + 2ty + -+ -+ (p + 3) tpr3 = .

Proof. In Theorem 2.7 , if we choose v = p+ 3 and? = j such that4 < 14,5 < p+ 3, then the
proof is immediately seen from (2). [
The generating function of the Padovan p-circulant numbers is given by

yp+2
Tyttt

9" (y)
where p > 2.

Note that the generating function ¢” (y) is, in effect, a generalization of the main result in
Section 2 of [17].

Now we give an exponential representation for the Padovan p-circulant numbers with the
following Theorems.

Theorem 2.9. The Padovan p-circulant numbers have the following exponential representation:

7 (y) =y exp (Z % (1—9"+ y””)i) :

Proof. Since

In gP =1
ng” (y) B T
— lnyp-i-Q_ln (1_y+y3+yp+3)

and
~m(l-y+y +y") = — {—y(l—yQ—y”“) —%yz (1= =)

_ln a2 o pE2\T
~y (1—v*—y"™?)

it is clear that
g7 (y) Z (?/) 2 +2) %

Thus we have the conclusion. L]
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Now we give the sums of the Padovan p-circulant numbers.
Let S, = Y o_, x, and suppose that M), is the (p +4) X (p + 4) matrix such that

(10 -+ 0]
1
M,=1]0 Cp
L. 0 -
Then it can be shown by induction that
1 0 - 0]
Satp+2

(Mp)a - Sa+p+1 (Cp)a

Sa
3 Conclusion

We have given Padovan p-circulant numbers. These sequences had defined by using circulant
matrices which had obtained from the characteristic polynomials of the Padovan p-numbers. Also,
we have given relationships between Padovan p-circulant numbers and the generating matrices of
these sequences. Then we have obtained some properties of the Padovan p-circulant numbers such
as the Binet formula, permanental, determinantal, combinatorial, exponential representations and
we have derived a formula for the sums of the Padovan p-circulant numbers.
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