On the symmetrical second order hyperbolic quaternions sequences

Sure Köme and Cahit Köme
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 26, 2020, Number 2, Pages 61–70
DOI: 10.7546/nntdm.2020.26.2.61-70
Full paper (PDF, 164 Kb)

Details

Authors and affiliations

Sure Köme
Department of Mathematics, Nevşehir Hacı Bektaş Veli University, Turkey

Cahit Köme
Department of Information Technology, Nevşehir Hacı Bektaş Veli University, Turkey

Abstract

The purpose of this study is to obtain a new generalized quaternions sequences by using hyperbolic functions with second order recurrence sequences. First of all, we define the symmetrical second order hyperbolic sine and the symmetrical second order hyperbolic cosine quaternions. Then, we investigate norms and some relations between these type of quaternions. We also obtain generating functions, Binet formulas, Catalan’s identity, Cassini’s identity and d’Ocagne’s identity of second order hyperbolic quaternions sequences.

Keywords

  • Second order hyperbolic functions
  • Quaternions
  • Binet formula
  • Generating function

2010 Mathematics Subject Classification

  • 11B37
  • 11R52
  • 05A15
  • 11B83

References

  1. Catarino, P. (2018). On hyperbolic k−Pell quaternions sequences, In Annales Mathematicae et Informaticae, 49, 61–73.
  2. Falcon, S., & Plaza, A. (2008). The k−Fibonacci hyperbolic functions, Chaos, Solitons & Fractals, 38 (2), 409–420.
  3. Flaut, C., & Shpakivskyi, V. (2013). Real matrix representations for the complex
    quaternions, Advances in Applied Clifford Algebras, 23 (3), 657-671.
  4. Flaut, C., & Savin, D. (2015). Quaternion algebras and generalized Fibonacci–Lucas quaternions, Advances in Applied Clifford Algebras, 25 (4), 853-862.
  5. Halici, S. (2012). On Fibonacci quaternions, Advances in Applied Clifford Algebras, 22 (2), 321–327.
  6. Hamilton, W. R. (1866). Elements of Quaternions, Longmans, Green & Company.
  7. Horadam, A. F. (1963). Complex Fibonacci numbers and Fibonacci quaternions, The American Mathematical Monthly, 70 (3), 289–291.
  8. Horadam, A. F. (1993). Quaternion recurrence relations, Ulam Quarterly, 2 (2), 23–33.
  9. Kocer, E. G., Tuglu, N., & Stakhov, A. (2008). Hyperbolic functions with second order recurrence sequences, Ars Combinatoria, 88, 65–81.
  10. Köme, S., Köme, C., & Yazlik, Y. (2019). Modified generalized Fibonacci and Lucas quaternions, Journal of Science and Arts, 19 (1), 49–60.
  11. Stakhov, A., & Rozin, B. (2005). On a new class of hyperbolic functions, Chaos, Solitons & Fractals, 23 (2), 379–389.
  12. Stakhov, A., & Rozin, B. (2006). The continuous functions for the Fibonacci and Lucas p−numbers, Chaos, Solitons & Fractals, 28 (4), 1014–1025.
  13. Stakhov, A., & Rozin, B. (2005). The golden shofar, Chaos, Solitons & Fractals, 26 (3), 677–684.

Related papers

Cite this paper

Köme, S., & Köme, C. (2020). On the symmetrical second order hyperbolic quaternions sequences. Notes on Number Theory and Discrete Mathematics, 26 (2), 61-70, DOI: 10.7546/nntdm.2020.26.2.61-70.

Comments are closed.