Ajai Choudhry and Arman Shamsi Zargar
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 26, 2020, Number 1, Pages 40–44
DOI: 10.7546/nntdm.2020.26.1.40-44
Full paper (PDF, 115 Kb)
Details
Authors and affiliations
Ajai Choudhry
13/4 A Clay Square, Lucknow – 226001, India
Arman Shamsi Zargar
Department of Mathematics and Applications, Faculty of Science
University of Mohaghegh Ardabili
Ardabil 56199-11367, Iran
Abstract
An elliptic curve defined by an equation of the type y2 = x3 + d is called a Mordell curve. This paper is concerned with Mordell curves for which d = k2; k ∈ ℤ; k ≠ 1. The point (0, k) on such curves is of order 3 and the torsion subgroup of the group of rational points on such Mordell curves is necessarily ℤ/3ℤ. We obtain a parametrised family of Mordell curves y2 = x3 + k2 such that the rank of each member of the family is at least three. Some elliptic curves of the family have ranks 4 and 5.
Keywords
- Mordell curves
- Rank of elliptic curves
2010 Mathematics Subject Classification
- 11D25
- 11G05
References
- Bennett, M., & Ghadermarzi, A. (2015). Mordell’s equation: a classical approach, LMS J. Comput. Math., 18 (1), 633–646.
- Elkies, N. D., & Rogers, N. F. (2004). Elliptic curves x3 + y3 = k of high rank, in
Algorithmic number theory (ANTS-VI), ed. D. Buell, Lecture Notes in Comput. Sci., 3076, Springer, Berlin, 184–193. - Ellison, W. J., Ellison, F., Pesek, J., Stahl, C. E., & Stall, D. S. (1972). The Diophantine equation y2 + k = x3, J. Number Theory, 4 (2), 107–117.
- Gebel, J., Pethö, A., & Zimmer, H. G. (1998). On Mordell’s equation, Compos. Math., 110 (3), 335–367.
- Hall, Jr., M. (1953). Some equations y2 = x3 − k without integer solutions, J. Lond. Math. Soc. (1), 28 (3), 379–383.
- Knapp, A. (1992). Elliptic Curves, Princeton University Press, Princeton.
- Lal, M., Jones, M. F., & Blundon, W. J. (1966). Numerical solutions of the Diophantine equation y3 − x2 = k, Math. Comp., 20 (94), 322–325.
- Ljunggren,W. (1963). On the Diophantine equation y2 − k = x3, Acta Arith., 8 (4), 451–463.
- Mordell, L. J. (1914). The Diophantine equation y2 + k = x3, Proc. Lond. Math. Soc. (2), 13 (1), 60–80.
- Mordell, L. J. (1920). A statement by Fermat, Proc. Lond. Math. Soc. (2), 18 (1).
- Mordell, L. J. (1966). The infinity of rational solutions of y2 = x3 + k, J. Lond. Math. Soc. (1), 41 (1), 523-525.
- Mordell, L. J. (1969). Diophantine Equations, Academic Press, London.
- Poulakis, D. (1999). The number of solutions of the Mordell equation, Acta Arith., 88 (2), 173–179.
- SAGE software, Available online at: http://www.sagemath.org.
- Schmitt, S., & Zimmer, H. G. (2003). Elliptic Curves: A Computational Approach, Walter de Gruyter, Berlin.
- Silverman, J. H. (1994). Advanced Topics in the Arithmetic of Elliptic Curves, Springer, New York.
- Young, M. P. (2015). The number of solutions to Mordell’s equation in constrained ranges, Mathematika, 61 (3), 708–718.
Related papers
Cite this paper
Choudhry, A., & Zargar A. S.(2020). A parametrised family of Mordell curves with a rational point of order 3. Notes on Number Theory and Discrete Mathematics, 26(1), 40-44, DOI: 10.7546/nntdm.2020.26.1.40-44.