Ugur Duran, Mehmet Acikgoz and Serkan Araci
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 25, 2019, Number 3, Pages 72-86
DOI: 10.7546/nntdm.2019.25.3.72-86
Full paper (PDF, 217 Kb)
Details
Authors and affiliations
Ugur Duran
Department of the Basic Concepts of Engineering
Faculty of Engineering and Natural Sciences
Iskenderun Technical University
TR-31200 Hatay, Turkey
Mehmet Acikgoz
Department of Mathematics
Faculty of Arts and Sciences
Gaziantep University
TR-27310 Gaziantep, Turkey
Serkan Araci
Department of Economics
Faculty of Economics, Administrative and Social Sciences
Hasan Kalyoncu University
TR-27410 Gaziantep, Turkey
Abstract
Motivated by Kurt’s blending generating functions of q-Apostol polynomials [16], we investigate some new identities and relations. We also aim to derive several new connections between these polynomials and generalized q-Stirling numbers of the second kind. Additionally, by making use of the fermionic p-adic integral over the p-adic numbers field, some relationships including unified Apostol-type q-polynomials and classical Euler numbers are obtained.
Keywords
- q-calculus
- Apostol–Bernoulli polynomials
- Apostol–Euler polynomials
- Apostol–Genocchi polynomials
- Stirling numbers of second kind
- Fermionic p-adic integral
- p-adic numbers
2010 Mathematics Subject Classification
- 05A30
- 11B68
- 11B73
References
- Apostol, T. M. (1951). On the Lerch Zeta function, Pac. J. Math., 1 (2), 161–167.
- Araci, S., & Acikgoz, M. (2012). A note on the Frobenius–Euler numbers and polynomials associated with Bernstein polynomials, Adv. Stud. Contemp. Math., 22 (3), 399–406.
- Araci, S., Khan, W. A., Acikgoz, M., Özel, C., & Kumam, P. (2016). A new generalization of Apostol-type Hermite–Genocchi polynomials and its applications, SpringerPlus, 5, Article \# 860 (2016), doi. 10.1186/s40064-016-2357-4.
- Bayad, A., & Kim, T. (2016). Identities for Apostol-type Frobenius–Euler polynomials resulting from the study of a nonlinear operator, Russ. J. Math. Phys., 23(2), 164–171.
- Choi, J., Anderson, P.J., & Srivastava, H.M. (2008) Some -extensions of the Apostol–Bernoulli and the Apostol–Euler polynomials of order , and the multiple Hurwitz zeta function, Appl. Math.Comput., 199, 723–737.
- Duran, U., & Acikgoz, M. (2016). New identities for Carlitz’s twisted -Euler polynomials under symmetric group of degree , J. Ana. Num. Theor., 4 (I.2), 1–5.
- El-Desouky, B. S., & Gomaa, R. S. (2014). A new unified family of generalized Apostol–Euler, Bernoulli and Genocchi polynomials, Appl. Math. Comput., 247, 695–702.
- He, Y., Araci, S., Srivastava, H. M., & Acikgoz, M. (2015). Some new identities for the Apostol–Bernoulli polynomials and the Apostol–Genocchi polynomials, Appl. Math. Comput., 262, 31–41.
- Kac, V., & Cheung, P. (2002). Quantum Calculus, Springer, New York.
- Karande, B. K., & Thakare, N. K. (1975). On the unification of Bernoulli and Euler polynomials, Indian J. Pure Appl. Math., 6, 98–107.
- Kim, D. S., Kim, T., Lee, S.-H., & Seo, J.-J. (2013). A note on -Frobenius–Euler numbers and polynomials, Adv. Stud. Theor. Phys., 7(18), 881–889.
- Kim, T. (2009). Some identities on the -Euler polynomials of higher order and -Stirling numbers by the fermionic -adic integral on , Russ. J. Math. Phys., DOI: 10.1134/S1061920809040037.
- Kim, T. (2008). Symmetry -adic invariant integral on for Bernoulli and Euler polynomials, J. Differ. Equ. Appl., 14, 1267–1277.
- Kurt, B. (2016). A note on the Apostol-type -Frobenius–Euler polynomials and generalizations of the Srivastava–Pinter addition theorems, Filomat, 30 (1), 65–72.
- Kurt, V. (2016). Some symmetry identities for the unified Apostol-type polynomials and multiple power sums, Filomat, 30 (3),583–592.
- Kurt, B. (2016). Notes on unified -Apostol-type polynomials, Filomat, 30 (4), 921–927.
- Kurt, V., & Kurt, B. (2016). Some identities and recurrence relations on the two variables Bernoulli, Euler and Genocchi polynomials, Filomat, 30 (7), 1757–1765.
- Luo, Q.-M. (2004). On the Apostol–Bernoulli Polynomials, Cent. Eur. J. Math., 2 (4), 509–515.
- Luo, Q.-M., & Srivastava, H. M. (2011). Some generalizations of the Apostol–Genocchi polynomials and the Stirling numbers of the second kind, Appl. Math. Comput., 217 (12), 5702–5728.
- Luo, Q.-M., & Srivastava, H. M. (2006). Some relationships between the Apostol–Bernoulli and Apostol–Euler polynomials, Comput. Math. Appl., 51, 631–642.
- Luo, Q.-M., & Srivastava, H. M. (2005). Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials, J. Math. Anal. Appl., 308, 290–302.
- Mahmudov, N. I. (2013). On a class of -Benoulli and -Euler polynomials, Adv. Difference Equ., 2013:108, doi:10.1186/1687-1847-2013-108.
- Mahmudov, N. I., Keleshteri, M. E. (2014). -extension for the Apostol-type polynomials, J. Appl. Math., V.2014, ID 868167, 8 pages.
- Mahmudov, N. I. (2012). -Analogues of the Bernoulli and Genocchi polynomials and the Srivastava-Pintér addition theorems, Discrete Dyn. Nat. Soc., Article ID 169348, 8 pages, DOI: 10.1155/2012/169348.
- Mahmudov, N. I., & Keleshteri, M. E. (2013). On a class of generalized -Bernoulli and -Euler polynomials, Adv. Difference Equ., Article \# 115 (2013), DOI: 10.1186/1687-1847-2013-115.
- Özarslan, M. A. (2011). Unified Apostol–Bernoulli, Euler and Genocchi polynomials, Comp. Math. Appl., 62, 2452–2462.
- Özarslan, M. A. (2013). Hermite-based unified Apostol–Bernoulli, Euler and Genocchi polynomials, Adv. Difference Equ., 2013:116, 13 pages, doi:10.1186/1687-1847-2013-116.
- Ozden, H. (2010). Unification of generating function of the Bernoulli, Euler and Genocchi numbers and polynomials, AIP Conf.Proc., 1281 (1), DOI: 10.1063/1.3497848.
- Ozden, H., Simsek, Y., & Srivastava, H. M. (2010). A unified presentation of the generating function of the generalized Bernoulli, Euler and Genocchi polynomials, Comp. Math. Appl., 60 (10), 2779–2789.
- Simsek, Y. (2012). Generating functions for -Apostol type Frobenius-Euler numbers and polynomials. Axioms, 1 (3), 395–403.
- Srivastava, H. M. (2011). Some generalizations and basic (or -) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inform. Sci., 5, 390–444.
- Srivastava, H. M. (2000). Some formulas for the Bernoulli and Euler polynomials at rational arguments, Math. Proc. Cambridge Philos. Soc., 129, 77–84.
- Srivastava, H. M., & Choi, J. (2012). Zeta and -Zeta functions and associated series and integrals, Elsevier Science Publishers, Amsterdam, The Netherlands.
- Srivastava, H. M., Garg, M., & Choudhary, S. (2010). A new generalization of the Bernoulli and related polynomials, Russian J. Math. Phys., 17, 251–261.
- Tremblay, R., Gaboury, S., &Fugère, B.-J. (2011). A new class of generalized Apostol–Bernoulli polynomials and some analogues of the Srivastava–Pintér addition theorem, Appl. Math. Lett., 24, 1888–1893.
- Yasar, B. Y., & Özarslan, M. A. (2015). Frobenius–Euler and Frobenius–Genocchi polynomials and their differential equations, NTMSCI, 3 (2), 172–180.
- Wang, W., Jia, C., & Wang, T. (2008). Some results on the Apostol–Bernoulli and Apostol–Euler polynomials, Comput. Math. Appl., 55, 1322–1332.
Related papers
Cite this paper
Duran, Ugur, Acikgoz, Mehmet & Araci , Serkan (2019). On applications of blending generating functions of q-Apostol-type polynomials. Notes on Number Theory and Discrete Mathematics, 25(3), 72-86, DOI: 10.7546/nntdm.2019.25.3.72-86.